登录注册
请使用微信扫一扫
关注公众号完成登录
2.1 实验材料
2.1.1 实验试剂
实验使用的双聚氰胺(分析纯)与海藻酸钠(化学纯)购自索莱宝试剂有限公司,二氧化钛(P25)购自阿拉丁化学试剂有限公司,无水乙醇、氯化钙、无水乙酸钠、碳酸氢钠、氯化铵、磷酸氢二钾、氯化钠、氯化亚铁、酵母膏、硫酸镁、硼酸、硫酸锰、二水钴酸钠、三水硝酸铜(均为分析纯)皆购自天津市福晨化学试剂厂,活性艳红X-3B(100%强度)购自上海将来试剂有限公司,葡萄糖(分析纯)购自西陇科学股份有限公司,实验中用水为去离子水.
2.1.2 光合细菌
实验光合细菌选用红螺菌属的商业菌株.基本培养基成分为:无水乙酸钠3 g、碳酸氢钠1 g、氯化铵1 g、磷酸氢二钾0.5 g、氯化钠1 g、氯化亚铁0.005 g、酵母膏0.05 g、硫酸镁0.2 g,蒸馏水定容到1000 mL.微量元素成分为:硼酸0.7 g、硫酸锰0.389 g、二水钴酸钠0.188 g、三水硝酸铜0.01 g,蒸馏水定容到1000 mL.取1 mL配制好的微量元素置于基础培养基溶液中,定容到1000 m.移取80 mL红螺菌菌液于1000 mL锥形瓶中,加入配制好的培养基,定容至刻度,置于100 W日光灯下培养(4±1) d,通过离心(5000 r ˙ min-1,5 min)获得菌液,用去离子水洗涤用于复合材料制备
2.2 实验方法
2.2.1 固定化光催化剂的制备方法
称取适量双聚氰胺于坩埚中,并放置在程序升温马弗炉中,设置条件为:初始温度44 ℃,按2.3 ℃ ˙ min-1升至550 ℃,550 ℃下煅烧4 h;将煅烧合成的块状g-C3N4研磨成粉末,放置干燥处储存、备用;将g-C3N4和P25按一定质量比(g-C3N4 : P25=1.5)混合于无水乙醇中,放置于六联搅拌器中搅拌4 h,超声1 h;然后将混合液置于真空干燥箱中,70 ℃干燥24 h,所合成的g-C3N4-P25光催化剂简称为PC.
配制50 mL 2%的海藻酸钠溶液,向海藻酸钠溶液中加入1 g g-C3N4-P25光催化剂,搅拌并置于超声清洗仪中(超声频率为100 Hz,时间设定为30 min),使其在海藻酸钠溶液中分散均匀.待超声完毕,用注射器将含有光催化剂的海藻酸钠溶液逐滴滴入2%的氯化钙溶液中,生成的包埋小球放置于4 ℃冰箱固化24 h以提高其硬度,最后用蒸馏水清洗小球备用,所合成的固定光催化剂简称为CA+PC.
2.2.2 固定化光合细菌的制备方法
配制50 mL 2%的海藻酸钠溶液,向海藻酸钠溶液中加入3 g(湿重)光合细菌,搅拌均匀,其余步骤同2.2.1节,所合成的固定化菌简称为CA+B.
2.2.3 g-C3N4/TiO2/光合细菌复合材料的制备方法
称取1 g海藻酸钠溶于25 mL蒸馏水中,向海藻酸钠溶液中加入适量g-C3N4-P25复合光催化剂,搅拌并置于超声清洗仪中(超声频率为100 Hz,时间设定为30 min),使其在海藻酸钠溶液中分散均匀.然后在含有3 g(湿重)光合细菌的离心管中加入25 mL蒸馏水,制成菌悬液.将菌悬液倒入含有光催化剂的海藻酸钠溶液中,搅拌均匀,其余步骤同2.2.1节,所合成的g-C3N4/TiO2/光合细菌复合材料简称为CA+B+PC.
2.3 模拟印染废水降解试验
以模拟印染废水为处理对象,废水水质如下:染料活性艳红X-3B浓度为50 mg ˙ L-1,COD(葡萄糖配)约1500 mg ˙ L-1.选用300 W的卤素灯作为光源模拟太阳光,对比CA+PC、CA+B及CA+B+PC降解染料和COD的规律.反应结束,取样进行UV-Vis、FT-IR及GC-MS分析.
3 结果与讨论
3.1 样品的表观形貌和结构表征
3.1.1 材料的外观
试验制备的CA+B、CA+B+PC、CA+PC材料的外观见图 1,合成的材料呈小球状,直径约为2~3 mm.
图 1 CA+B (a)、CA+B+PC (b)、CA+PC (c)的外观形貌
3.1.2 SEM分析
图 2为海藻酸钙载体(CA)、CA+PC、CA+B、CA+B+PC的电镜扫描图.由图可见,CA载体含有很多微小的孔道(图 2a),一方面有利于微生物的附着,另一方面可以为包埋在载体内部的微生物提供生命代谢活动所需营养物质的输送通道.相比CA载体的孔道,CA+PC的孔道变得更致密,可能是由于纳米级的光催化剂分散或附着在孔道中(图 2b).而CA+B表面相对比较光滑,其表面还可以看到部分光合细菌分散在载体上(图 2c).从图 2d中可明显地看到光合细菌包埋并分布于凝胶网络结构中,由于纳米级材料几乎观测不到,因此结合图 2e可知,该载体含有C、N、O、Ti等元素,说明g-C3N4-P25光催化剂已负载到载体中.理想状态下,大部分微生物包埋于CA载体内部,由于载体的保护,微生物可免受强氧化性自由基的氧化.光催化剂均匀分散在载体中,而只有小球外表面部分光催化剂可以接受光源的激发从而产生自由基破坏难以生物降解的物质.后续将利用该复合材料同时降解染料和COD的结果来验证以上猜测.
图 2 CA (a)、CA+PC (b)、CA+B (c)和CA+B+PC (d)的电镜扫描图及CA+B+PC的能谱分析图(e)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
一、引言伴随工业化与城市化进程迅猛推进,污水排放量持续攀升,污水处理已然成为环境保护领域的核心议题。面对成分日趋复杂的污水,传统污水处理手段逐渐暴露出短板。在此背景下,臭氧高级氧化技术作为一种高效且环保的新型污水处理技术,备受瞩目。本文将深入剖析臭氧高级氧化技术在污水处理中的实际
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
近日,由江苏交建公司承建的长泾第一污水处理厂(一期)工程项目最大单体构筑物——“A/O池及鼓风机组”主体结构顺利完工。该项目位于江苏省江阴市长泾镇,总占地面积约69亩,工程建设内容主要包含污水处理构筑物、设备安装及配套管网等。本次完工的“A/O池及鼓风机组”为厂区内最大单体构筑物,结构尺
比对采样偷懒耍滑,pH校准将错就错,现场数据任意填写……不久前,浙江省金华市浦江县发现并查处一起环境检测造假案,涉案人员在比对检测中一而再、再而三的违规操作,检测单位一次又一次的审核不严,导致环境检验检测报告数据失真、内容失实。据了解,案发当日,金华市生态环境局浦江分局会同第四方技
PAC(聚合氯化铝)是一种高效絮凝剂、净水剂、除磷剂。由于特性优势突出,适用范围广,用量可比传统净水剂减少30%以上,成本节省40%以上,已成为目前国内外公认的优良净水剂。此外,聚合氯化铝还可用于净化饮用水和自来水给水等特殊水质的处理,如除铁、除镉、除氟、除放射性污染物、除浮油等。1、PAC
1月17日,长泾镇第一污水处理厂(一期)工程项目首个单体垫层浇筑完成,标志着项目全面进入主体结构施工快速推进阶段。本项目位于长泾镇印染集聚产业园北部,用地面积共46287平方米(约69.43亩),用地分南北两部分,北厂区用地32617平方米(约48.93亩),南厂区用地13670平方米(约20.50亩)。本项目
4月19日,在上海第二十四届中国环博会上,中国广核集团所属中广核核技术发展股份有限公司(以下简称“中广核技”)举办技术品牌发布活动,正式发布电子束处理特种废物技术品牌名称——“和美”,并在活动现场公布了该技术在化工园区废水治理领域应用项目的最新进展。▲“和美”技术品牌正式发布“和美
2月27日,由中广核核技术发展股份有限公司(简称“中广核技”,股票代码:000881.SZ)自主研发的“120keV-520mA电子帘加速器”通过专家鉴定。本次鉴定会由中国科学院院士、放射医学与辐射防护国家重点实验室主任柴之芳院士担任鉴定专家委员会主任,标志着我国首台大功率电子帘加速器正式完成验收。与传
【社区案例】前辈们,我想咨询一下,为什么“D型氧化沟”被称为“D型氧化沟”?“T型氧化沟”被称为“T型氧化沟”?“VR型氧化沟”被称为“VR型氧化沟”?“BMTS型氧化沟”被称为“BMTS型氧化沟”?一、什么是氧化沟?氧化沟(OxidationDitch,OD)又称为连续循环式反应器(ContinuousLoopReactor,CLR),
近日,浙江省嘉兴市秀洲区生态环境通报了一起使用替代样干扰在线监测数据在线监测弄虚作假案。【案情简介】2022年5月21日,嘉兴市生态环境局秀洲分局聘请的第三方在线监理单位在对重点排污单位开展在线视频巡查检查时发现,5月20日晚嘉兴市某印花有限公司废水在线监控站房有不明人员多次擅自进入,同时
2022年8月15日,2022年中国污水处理厂提标改造高级研讨会(第六届)在长春市举办。会上,各个研究方向的知名专家学者和主要单位代表为大家带来了一场污水处理厂提标改造的知识盛宴。泓济方案解决难点上海泓济环保副总经理王浩在会上发言,向与会嘉宾讲述了泓济环保的“污水处理厂提标改造解决方案”,介
2017年我国工业废水排放量约为690亿t,其中难降解废水超过100亿t,主要包括焦化、印染、农药、石油、化工等工业废水,其特点是成分复杂,COD、色度、盐分和毒性难降解物质含量高。采用传统的生物法处理难降解工业废水难以使其达标排放,而采用物化处理工艺则存在费用高的问题,因此,对该类废水的处理
铁碳微电解法的工艺特点近年来,微电解法在许多行业的废水处理中都有大量应用,工艺已日趋成熟。影响微电解处理效果的因素主要有废水pH值、停留时间、处理负荷、铁屑粒径、铁炭比、通气量、微电解材料选择及组合方式等,有的还会影响反应的机理[3]。一般来说:1)入水pH值应选偏酸性,可控制到3-6.5,
01无机絮凝剂无机低分子絮凝剂有氯化铝、硫酸铝、硫酸铁、氯化铁等。其聚集速度慢,形成的絮状物小,腐蚀性强,在水处理过程中存在较大的问题,而逐渐被无机高分子絮凝剂所取代。无机高分子絮凝剂是在传统铝盐、铁盐的基础上发展起来的一种新型的水处理剂,价格较低廉,净水效果好。聚合氯化铝(PAC)的
“科技发展,关键在人。这是河南农业大学废弃物资源化利用团队不忘初心,攻坚克难的基本遵循。”作为享受国务院特殊津贴专家、教育部首批“国家级优秀骨干教师”和河南省特色骨干学科(农业工程)的学术带头人,农业农村部可再生能源新材料与装备重点实验室主任、河南农业大学原副校长张全国教授从开始
美国研究人员强迫将金纳米颗粒喂给非光合细菌。贵金属的位的发行给微生物以打开光进入太阳能燃料的能力,报告一个Nanowerk文章。热乙酸穆尔氏菌通常不能进行光合作用。从研究美国加州大学伯克利分校(加州大学伯克利分校)加入硫化镉纳米粒子对细菌的细胞膜的外部。硫化镉可以吸收光。当嫁接到细菌上时,
光合细菌污水资源化是一种新兴的有机废水处理及生物资源转化技术。光合细菌能够高效处理污水,同时把碳氮磷转化为有用的菌体细胞,可用于水产、畜禽养殖和农作物培育。从光合细菌污水资源化技术对营养型废水的资源化、对高氨氮废水的高效氮去除、对其他类型废水的处理、光合细菌污水处理重要影响因素、
生物菌大家已经不陌生了,目前应用常见得。在生活的应用,垃圾除臭,畜牧业养殖,蓝藻除臭,土壤非肥沃度的改善。我们想要更适应大自然,我们就得需要运用大自然自己的力量,去净化,去调整,去改善我们的生活所给大自然造成得“影响”。大自然的生物菌具有的高效吸附、吸收和降解作用。有些生物菌的也
含酚废水主要来源于焦化、煤气、炼油和以苯酚或酚醛为原料的化工、制药等生产过程,其来源广、数量多、危害大,是各国水污染控制中列为重点解决的有毒有害废水之一。此废水处理原则:①对高浓度含酚废水,首先应考虑将酚加以回收利用;②对含酚浓度较低、无回收价值的废水或经回收处理后仍留有残余酚的
“环保风暴”,“黑臭水体”,“河长制”,“湖长制”等名词频繁出现在各大媒体版面。“到2020年,我国地级及以上城市黑臭水体均控在10%以内,到2030年,城市建成区黑臭水总体得到消除。”这是国务院发布的《水污染防治行动计划》对黑臭水体治理提出的明确要求。形成黑臭水体主因:缺氧与富营养水体黑
本文我们将向大家介绍美国亚利桑那州立大学的BruceRittmann教授2018年在《WaterResearch》上最新发表的《Biofilms,activesubstrata,andme》。关于BruceRittmann教授BruceE.Rittmann教授是美国亚利桑那州立大学生物设计研究所Swette环境生物技术中心的主任、可持续工程与建设环境学院的杰出董事教授(Reg
摘要:水资源是重要资源,它的缺失对经济的影响是巨大的。水体一旦受到污染,不仅使水资源的数量、质量下降,而且污染后的水体也很难再得到恢复和控制。在工业的发展,如何有效的对废水进行处理,对于我国可持续发展的国策推行具有积极的促进作用。关键词:焦化废水;污染;特征;控制引言近年来,全球经
有机颜料生产废水污染物种类多,结构复杂,含有较多大分子难降解的基团,且水量水质波动大,COD、有机氮、盐分浓度较高,属于典型的难降解有机废水。目前,对于颜料废水的治理主要采用厌氧+好氧为主的生化法,预处理和深度处理最常用的是混凝沉淀和Fenton氧化,其他还包括化学沉淀、过滤、吸附、电解、
一、工程项目既述S港位于A河的北方,属于A河的一条直流。其中,河道主要是以L型分布,且南部与B河相通,向西到C路,以西则是D区。在D区内部,河道主要向西方向与T港相通。S港是该城市中心城区最具代表性的开放公共区域,其功能诸多,不仅可以调度水资源,同样可以防汛除涝。在城市快速发展的过程中,生
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!