登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
导语:基于传统生物除磷理论的带有前置厌氧区的主流生物除磷脱氮工艺在过去近半个世纪的水体富营养化控制过程中一直发挥着主导作用。近些年全球范围内侧流活性污泥水解发酵项目(简称S2EBPR或SSH)得到快速发展及应用,通过对这些项目生物除磷的研究发现,这些采用侧流活性污泥发酵的污水厂出现了高效且更加稳定的生物除磷现象,但这种侧流EBPR却无法利用传统经典理论来进行对照解释。这种情况下,一种可以直接利用葡萄糖及氨基酸进行发酵并释磷的新PAO菌属Tetrasphaeraspp.被发现并分离,Tetrasphaeraspp.在很多侧流活性污泥水解污水厂的菌群结构中相对传统Accumulibacter菌属占有更高的丰度(abundance), “Accumulibacter-Tetrasphaera”共生协同的“双PAOs协同共生除磷理论”(coexistence and synergy)及模型建立是对传统生物除磷理论的重大拓展与突破。本文基于污水处理生物除磷脱氮技术发展史视角,从主流污水脱氮除磷工艺技术发展史梳理开始,对侧流EBPR现象发现及侧流发酵机理、Tetrasphaera发现、生化代谢模型及其生态位(ecological niche)、双PAOs模型的建立等方面进行了系统性梳理和总结,并结合国内外研究成果及实际案例,总结了侧流活性污泥水解发酵技术工艺构型新发展及工程化应用现状,在此基础上展示了未来侧流EBPR技术的发展前景,以期为我国污水厂未来深度脱氮除磷提标改造尤其是低C/N比污水的处理提供借鉴。
控制水体或湖泊富营养化的关键性生态因子是减少氮、磷的输入并控制合适的N/P比,对于缓流水体和湖泊,控制水体P的浓度又是防控富营养化的首要控制因子,利用强化生物脱氮除磷(EBNR)工艺通过生化途径去除营养盐被认为是最经济有效的方式,因此,半个多世纪以来,强化脱氮除磷甚至实现深度脱氮除磷(如达到技术极限型出水标准,LOT)、探索各种革新的工艺实现对N、P的高效稳定去除一直是污水处理研究者和工程设计和运营工程师们痴迷和追求的极致方向。
科学研究和技术的开发始于对特殊试验现象的发现,技术发展得益于现象背后的机理和规律被逐渐揭示,百年活性污泥发展史也概莫如此。早在1955年,Greenburg提出活性污泥法中磷的去除,印度Srinath研究小组和美国Alarcon研究小组分别在1959年、1961年报道了在污水厂发现了生物除磷现象,Levin and Shapiro (1965) 试验中发现活性污泥好氧过程的P的摄取和厌氧条件下P的释放现象在此基础上正式提出了PhoStrip工艺, 1967年Vacker和Connell在美国san antonio一座市政污水厂也发现生物超量除磷, 1975年Fuhs&Chen正式系统性提出聚磷菌PAO的厌氧释磷-好氧过度摄取磷酸盐生物机制,也是在同一年, James Barnard先生提出Bardenpho工艺、美国Specter获得A/O及AAO工艺发明专利,1976年James Barnard正式推出Phoredox工艺的不同工艺类型组合,再到1980年UCT工艺构型被提出,这一系列的生物除磷事件成为污水技术发展史上的里程碑,在过去近半个世纪中,上述活性污泥生物脱氮除磷及其变形或改进工艺在世界范围内被广泛应用,有效削减污水中有机污染物及营养盐、控制和减轻水体富营养化发挥了重要作用。
1侧流活性污泥发酵强化EBPR现象的发现
传统主流EBPR工艺除磷机理模型是建立在厌氧条件下Accumulibacter类PAO对进水中可快速降解有机物主要是挥发性脂肪酸(VFAs)的摄取而发生磷的释放基础上,运行实践也表明,进水VFAs充足情况下,通过良好的设计和可靠的运行,传统EBPR工艺出水TP可以达到0.5~1.0mg/L;但是最近10~20年以来的一些没有前置厌氧的活性污泥工艺获得高效且较为稳定的除磷现象在欧美一些污水厂被观察到,仅依靠生物除磷出水TP可以达到0.1mg/L,经典理论模型已经无法解释这种“非主流”除磷现象。与此同时,随着对污水厂排放标准要求的日益提高,常规主流的强化生物脱氮除磷工艺面临越来越高的技术挑战,如进水水质特性尤其是低C/N比污水对脱氮除磷工艺运行的可靠性、稳定性与可持续影响,外回流携带的NO3--N进入厌氧区破坏厌氧环境而影响厌氧释磷过程。此外,传统主流脱氮除磷工艺(如A/O、A2O、Bardenpho工艺)中通过生物絮凝作用捕获和吸附的胶体、颗粒性有机物,在生化厌氧、缺氧过程中由于水解作用不充分并没有被作为有效碳源被脱氮除磷过程充分利用。
1972年被誉为“脱氮除磷之父”的James Barnard在进行规模为100m3/d的“A/O-A/O”构型的脱氮中试(装置有一个用于调节池容分配的可移动式隔板,无意中创造了一个“死区”形成了一个“发酵区”)中发现,这个带有“发酵死区”的“A/O-A/O”脱氮系统获得了高效的生物除磷效率,在进水TP 为9mg/L情况下,出水TP可以低于0.2mg/L,在第二段缺氧区,混合液PO43--P达到30mg/L;当取消“死区”后,装置出水TP达到2mg/L。试验分析,显然是“死区”的厌氧过程发生了污泥和混合液的水解作用,产生了VFAs,大量的VFAs通过25mm连接管涌入到第二段缺氧区,促进形成了厌氧环境进而发生了P释放。显然,这次著名的四级反应器的脱氮试验,那个可以来回移动的可调节“好氧-缺氧池容”的隔板及上面25mm的2个孔洞,为日后侧流活性污泥强化生物除磷(S2EBPR)技术的发现和进一步发展,打开了一扇窗。
2侧流活性污泥发酵强化EBPR技术的发展
James Barnard先生1972年采用的“A/O-A/O”脱氮工艺实际上就是其1975年提出的“四段式Bardenpho”工艺的前身,根据此试验结果后来进一步提出了带有厌氧区的Bardenpho工艺,也就是目前常用的“五段式Bardenpho”工艺。然而,James Barnard那次试验发现“死区”促进BPR,但当时其并没有在这个试验研究基础上进一步提出侧流污泥发酵或者混合液发酵的概念。那次试验的前后几年光阴,也是活性污泥工艺前端设置一个厌氧区作为实现生物除磷的基本工艺控制条件刚刚被认知的年代,也是在1975年-1976年,James Barnard在Bardenpho工艺基础上正式提出个发展带有前置厌氧段的Phoredox系列同步脱氮除磷工艺,这些工艺构型至今仍然在污水处理领域中扮演重要角色。
继续梳理侧流活性污泥发酵的技术发展史会发现,真正提出活性污泥侧流发酵理念和工程应用是1990年后的事情了。较早介绍并将侧流活性污泥水解技术应用于工程实践的是丹麦克鲁格公司(Kruger A/S)及Envidan公司,Brinch P.于1997年报道了利用“回流活性污泥水解”补充SCOD强化脱氮除磷的理念和做法, Vollertsen J.G. Petersen G.等人利用丹麦Aalbog东、西两座污水厂进行了侧流活性污泥水解的前期开创性工作,并对污泥水解动力学参数进行了系统研究。实际上,最初的实践是对初沉污泥进行水解,工程案例主要集中在丹麦、瑞典和北美,主要工艺控制参数SRT为2~5d。由于初沉污泥水解需控制水解和产酸过程,而不进入产甲烷化,水解产物需要进行“泥-液”二次分离,因此存在SCOD及VFAs从泥水混合液中分离、“洗出”效率的问题,同时初沉污泥水解易受到进水水质、水量波动及初沉池排泥影响。相对于初沉污泥水解,活性污泥水解产物SCOD产率虽然较低,但是活性污泥水解无需进行发酵液的二次分离,泥水混合液可全部引入到厌氧池,同时回流的活性污泥流量及浓度可控,因此,活性污泥水解工艺稳定性更高,近些年受到越来越多的研究和工程化应用。
3活性污泥发酵强化EBPR机理新发展
笔者曾对侧流活性污泥发酵技术工艺构型做过总结,在早期的侧流活性污泥水解案例中,设置侧流污泥发酵单元的初衷就是对部分回流活性污泥(RAS)进行厌氧水解发酵,将产生的SCOD和VFAs提供给主流厌氧区的PAOs释磷过程,因此,2010年前的关于侧流活性污泥发酵的文献,都是关于水解产率、影响因素及动力学等方面研究和论述。
3.1Tetrasphaera菌属的发现与分离
很久以来,CandidatusAccumulibacter一直被视为EBPR最主要的PAOs。2010年前后,丹麦和美国一些研究者发现一些未设传统前置厌氧区的侧流EBPR项目实现了高效生物除磷,而按照传统PAOs生化代谢模型已经不能解释和拟合这些“非主流”工艺实际的运行状况和出水水质。但是,当时的研究关注点尚未对水解发酵过程微观领域如菌群结构特性等进一步解析,只是停留在宏观水解反应动力学参数及影响因子的定量化研究等方面,对侧流活性污泥技术的认知也不够深入。后来分子生物学技术手段的快速发展为揭开动力学参数背后隐藏的“秘密”提供了通道,实际上,2000年前后Maszenan A.M.等人、Hanada A.等人从活性污泥中分离出了具有聚磷能力的Tetrasphaera菌属,并确认为是一种新型的PAOs,这一发现拓展了对PAOs菌属种类的认知及定义。但这个时期的研究仅仅是确认了Tetrasphaera的形态、生理生化及分类特性,Tetrasphaera菌属的生态位及其与深度厌氧环境、侧流RAS发酵之间的本质联系并没有被揭示。丹麦奥尔堡大学的研究团队通过对丹麦实际污水厂EBPR菌群结构的定量化解析,发现Tetrasphaera的丰度超过了Accumulibacter,且Tetrasphaera类PAOs具有发酵特性并能直接利用葡萄糖和氨基酸进行厌氧释磷,并在后续工作中进一步建立了Tetrasphaera生化代谢模型(见图1)。美国东北大学April G.团队通过传统主流EBPR和侧流EBPR系统的对比也发现了类似规律,即S2EBPR工艺的活性污泥中Tetrasphaera具有较高的丰度,侧流EBPR系统能够实现更高的除磷效率,此外,与传统主流除磷工艺相比,S2EBPR中较低含量的GAOs(聚糖菌)使其出水水质更为稳定。上述两个团队的研究确立了深度厌氧环境下EBPR菌群结构的多样性,尤其是侧流EBPR工艺与Tetrasphaera菌属与之间的内在本质联系。可以说,Tetrasphaera在生物除磷过程中的发现和分离,以及后续对代谢生化模型的建立大大推进了对传统EBPR理论的拓展及完善,这也促使一些具有远见的科学家不得不重新反思目前常规的主流脱氮除磷机理及工艺流程的技术缺欠和改进的机会。
图1Tetrasphaera的厌氧生化代谢模型
3.2 “双PAOs”共生协同作用及模型建立
生化过程机理一旦被解析,工艺控制条件随之被认识和优化,后续工艺控制条件的深入研究进一步揭示了深度厌氧环境(ORP为-300mV)独特的工艺特性。传统厌氧区的ORP在-150~-250mV,实际项目往往存在过度混合,且SRT往往较短(≤1.5h),难以培育更加丰富的厌氧生物菌群结构, PAOs主要以Accumulibacter为主;深度厌氧环境下,ORP可以稳定保持在-300mV以下,且污泥在侧流池内停留时间长,使得EBPR菌群结构更加丰富,尤其是PAOs多样性发生很大变化,Mielczarek A.T.等利用FISH技术对丹麦具有EBPR功能的污水厂活性污泥种群进行了分析,发现两种不同的PAOs协同共生,其中Tetrasphaera占据活菌总量的27%,而传统的Accumulibacter仅占3.7%。美国东北大学的 April Z. Gu团队研究也发现,S2EBPR系统的生物除磷性能显著高于常规AAO系统,且S2EBPR释磷比(P/PHA)是AAO的3倍,进一步的菌群结构定量分析表明,相对传统主流EBPR,S2EBPR污泥中Tetrasphaera在聚磷菌占据主体地位(见表1),且GAO数量要显著低于常规AAO系统,在侧流活性污泥工艺中,同时发现对EBPR有负面作用的Competibacter类的GAO生长受到明显抑制。
表1. 侧流活性污泥水解工艺PAOs、GAOs组成及释磷比情况
过去传统生物除磷理论认为PAOs(主要是指Accumulibacter菌属)利用进水中VFAs(挥发性脂肪酸)进行厌氧释磷,因此进水中的VFAs含量直接决定了厌氧释磷的效果,在Tetrasphaera与Accumulibacter共生协同机制被揭示后,美国Black& Veatch公司开发了基于“双PAOs”侧流EBPR模型(见图2)。不同种类的PAOs在EBPR过程中可有选择地实现不同的生化代谢途径,Tetrasphaera菌属可以直接利用大分子的葡萄糖、氨基酸等进行发酵释磷,而糖酵解途径比TCA循环更具有优势,这就意味着Tetrasphaera菌属的发酵作用减少了对进水VFAs的依赖,这也是为何没有前置厌氧区的“非主流”工艺能取得高效生物除磷效果的原因所在。进一步讲,在侧流反应器内,Tetrasphaera与Accumulibacter存在共生协同促进作用,Tetrasphaera在深度厌氧环境下通过水解发酵作用将污水中的可慢速降解有机物进行水解产生VFAs并释放磷酸盐,水解过程产生的VFAs被Accumulibacter吸收储存并同时释磷,显然,对于碳源不足或者进水VFAs匮乏的污水处理,通过引进侧流污泥发酵、利用“双PAOs”协同作用可有效强化EBPR。
图2 发酵PAO-Tetrasphaera与传统PAO共生协同促进代谢机制
在 “双PAO模型”基础上,Black & Veatch公司进一步建立了基于ORP抑制的Tetrasphaera厌氧发酵因子函数,发现厌氧ORP对Tetrasphaera厌氧活性具有直接影响,随着ORP升高,其发酵及释磷活性大幅降低(见图3),显然,这进一步证实了Tetrasphaera与Accumulibacter具有完全不同的生态位。
图3 ORP对Tetrasphaera类聚磷菌厌氧发酵及释磷效率的影响
综上所述,Tetrasphaera的发现和其代谢模型的建立,使是对几十年以来传统生物除磷理论的重大拓展和突破,必将更新对传统生物除磷的技术认知,并促进设计及运营两个层面从不同的维度,去思考如何优化现有EBPR系统、如何重新构建新型的高效EBPR系统。
4S2EBPR技术的主要工艺构型及发展
4.1基本构型
实际上,工艺的最初提出和发展并不是始于特殊功能的微生物的发现,而是始于运营中特殊现象、效果被发现而逐渐优化改进处理工艺,侧流污泥水解工艺就是如此,最初的侧流活性污泥工艺构型由丹麦研究团队提出,即侧流活性污泥水解概念(Side-stream activated sludge hydrolysis);美国东北大学及BLACK&VEATCH公司提出了“S2EBPR”概念及构型,虽然归属不同的名词,但本质上都是“侧流(side-stream)活性污泥发酵”范畴,即旨在创造一个深度厌氧环境(ORP≤-300mV)以提高PAO种群多样性、促进Tetrasphaera的繁殖。
侧流反应器在结构和功能上是独立于主生物池之外,通过独立的反应器设置,独立的生境环境,进行污泥或者混合液的发酵和特殊功能微生物的培育,进而为主生物池进行接种。侧流反应器可以与生物池合建,也可以单独另行新建;对于改造项目,也可以从主生物池首端划分出一个区段作为侧流池。活性污泥发酵工艺常用的设计流程见图(4)所示。
图4 不同的活性污泥水解工艺构型
其中4(a)是活性污泥的侧流水解经典流程,将回流污泥RAS一部分引入到一个独立的侧流反应器进行水解产酸过程;4(b)与4(a)类似,只不过是4(b)在采用RAS发酵的同时还进一步补充VFA,这部分VFA可以来自初沉污泥的发酵液,亦可以单独投加商业碳源,投加VFA的目的是缩短侧流水解池的SRT。图4(c)为混合液在线发酵,通过厌缺氧区搅拌器的关闭实现了活性污泥混合液的水解发酵;4(d)是混合液的侧流离线发酵模式,将混合液引入一个独立的侧流反应器进行水解。
4.2近些年工程化应用及构型新发展
随着机理的解析,工艺技术发展及应用方式也愈加灵活和纷呈。侧流污泥水解除了上述经典的构型,实际中还有很多与不同工艺相结合的灵活运用方式,可将S2EBPR理念嫁接到不同的主流处理工艺中。
侧流活性污泥发酵工艺在欧美快速发展,近些年中国也开展了针对国内低C/P、C/N比污水的相关工程化应用,截至目前,国内设计、建设及运行中的侧流项目大概有10座,如淮南第一污水厂、白银市污水厂等项目,主要采用的工艺构型见图5,引10%~30%的RAS至侧流SSH池,已运行的案例证明侧流RAS水解发酵技术可实现低C/N比污水的强化生物除磷,大大降低了外加碳源及化学除磷药剂的投加量。
图5 侧流活性污泥水解强化脱氮除磷流程
美国在S2EBRP方面探索了较为灵活多样的技术构型,科罗拉多州的Pinery WRF中试项目关闭混合器后,采用UMIF运行模式,出水TP可以稳定在0.5mg/L以下而无需化学除磷;Henderson WRF项目采用UMIF运行模式后,出水TP可以稳定在0.1mg/L以下,采用UMIF运行反应器内实际的SRT可达3d,这样可为活性污泥发酵提供充分的“深度厌氧”环境及充足的SRT。
South Cary污水厂主流工艺在四段式Bardenpho工艺构型中嵌入了S2EBPR,二沉池回流污泥RAS不像传统回流模式直接至主生物池,而是将全部RAS顺序经过串联的侧流“缺氧/厌氧”池,其中再抽取厌氧池一部分污泥进入活性污泥发酵池进行发酵,发酵后的污泥再回流到厌氧池。该厂出水TN可以稳定达到3~4mg/L,出水TP达到0.5mg/L,可见,回流污泥的侧流发酵大大提高了生化工艺脱氮除磷效率。
美国West Kelowna B.C.的Westside污水厂采用全部回流污泥侧流发酵构型,为了减小侧流发酵池的SRT,将初沉污泥发酵产生的VFAs引入侧流RAS池,初沉出水不进入厌氧池而直接进入第一个缺氧区进行反硝化,这样在侧流RAS池HRT只有1.3h的情况下,出水TP≤0.1mg/L,根据对氮的物料平衡分析,缺氧区发生了明显的反硝化除磷作用,对TN的去除贡献了20%~40%。这种工艺构型对于低C/N比污水具有显著的技术优势,可以充分挖掘和使用污水内碳源,减少或取消外部碳源的投加。
实际上,有些污水厂其实“无意中”已经探索内碳源开发模式下的污泥水解模式运行,有污水厂运行人员摸索发现,储泥池按照污泥水解理念调整并改变运行方式后也能发生部分污泥水解,上清液回收引入厌缺氧池后提到了脱氮除磷效果,如中国嵊州市嵊新污水处理厂将储泥池上清液引入缺氧池后TN去除量提高了3mg/L;有污水厂厌缺氧区搅拌器故障或停运后,发现这样可导致污泥沉淀进而发生沉积层深度厌氧条件下的水解发酵,提高了脱氮除磷效率,因此将推流器或搅拌器改为“ON/OFF”实现UMIF模式运行,取得了意想不到的脱氮除磷效果。
5结 语
污水处理技术的突破与发展起初往往是始于特殊现象的发现与效果的确认,很多情况,是实践先于“理论”解释,从最初的现象描述到新机理的揭示再到动力学和生化代谢模型的建立,进而逐渐形成比较完整的技术理论体系;新的理论体系完善后又进一步促进了对原有技术的变革在科学研究及工程实践中不断完善和优化前续成果,实现技术发展的反复迭代过程。侧流活性污泥发酵技术的发现发展轨迹也恰恰演绎了这种从“现象到理论”的技术发展逻辑。侧流EBPR并不是对主流EBPR的技术颠覆,而是进一步拓展和丰富了传统生物除磷技术理论,阐释了深度厌氧环境下(-300mV)可利用葡萄糖.氨基酸进行发酵并除磷的Tetrasphaera菌属与传统Accumulibacter菌属存在共生协同、促进EBPR过程效率的机理,“双PAOs”模型除磷理论体系的建立为未来可持续、更加高效稳定的生物脱氮除磷技术开辟了一条崭新的技术选择路线,尤其是对于我国很多地区低C/N比碳源匮乏污水的处理提供了一个崭新的可持续工艺解决方案。
近几年,出现非常有趣的现象是,对于生物脱氮,专家们的眼光从“侧流”转向了“主流”;然而,对于生物除磷,关注点却是从“主流”转向了“侧流”,脱氮与除磷这对孪生的“矛盾兄弟”,通过这次空间顺序的轮换,是否能为未来的污水处理工艺发展缔造一个新的里程碑?这不是意外,也不是巧合,亦无人导演,但此过程却不以你我的意志为转移,魅力无穷,这一切都依赖于科学家们对未知领域新探索新发现的逐步打开。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
随着经济和技术的发展,MBR工艺在污水处理厂的新建和提标改造中得到了一定范围的应用。传统MBR工艺常耦合活性污泥法、AO、AAO等,实际运行中存在TN、TP去除率受限的情况。根据研究,UCT工艺在实际应用中能最大程度地挖掘生物除磷的潜力,实现低磷排放[1]。同时,MBR可取代传统生物工艺中的二沉池,出水
这一周接着和大家来讨论生化池的工艺运行细节。生物除磷是污水厂经济合理的除磷方式,但是在实际运行中,污水厂更倾向于使用化学除磷的方式来组织日常的生产达标,这是因为化学除磷有着管理简单,见效快,不影响生物脱氮的长污泥龄的要求,因此在多数污水厂大量依靠化学除磷是比较多的一种方式。化学除
这一周接着和大家来讨论生化池的工艺运行细节。这周公众号将继续围绕生物除磷的厌氧区进行细节管理的讨论。作为生物除磷功能区域的生化池厌氧部分,同时还具备外回流的接纳区域,在传统的活性污泥工艺中,二沉池与生化池之间通过外回流泵将沉淀到二沉池底部的活性污泥循环进入到生化池内,形成一个活性
2016年4月,美国国家清洁水组织协会(NACWA)联合美国水环境联合会(WEF)和美国环保署(EPA)等多个组织,成立了名为“UtilityoftheFutureToday”的项目,鼓励各地水务局在水回用、水流域治理、污泥回用、能量回收以及原材料回收等方面开展相关项目。同年8月NACWA公布了该项目首批获认证的水务局名单。
目前可持续性正在成为人们关注的一个主要问题,以更加综合和创新方式解决水问题就显得十分重要。因此,研发更加可持续性工艺至关重要。在可持续过程中追求的是回收所有有用资源,例如,化学品、营养物质、能源和水本身。在这方面,污水可以被视为资源与能源的载体。回收养分和有机(COD)能量后,出水作为副产品可以用作再生水利用;这与传统工艺完全不同,它们一般不考虑资源与能源回收,而是仅将出水作为主产品(中水)加以利用。事实上,有机能源回收可以显著减少剩余污泥产量和CO2排放量,而回收磷酸盐则可以缓解对磷矿的消耗。
强化生物除磷(EBPR)工艺被广泛应用于污水脱氮除磷,其机理和相对于化学除磷工艺的优势在此不再赘述,我们传统认知均以Accumulibacter菌(A菌)作为主要的PAOs菌,生物除磷数学模拟技术也是以A菌的代谢作为PAOs代谢进行模拟。
随着炎夏的到来,污水厂处理的水温上升,多数污水厂在夏季期间,水温能达到20℃左右,这是微生物较为适宜的一个生存温度,各类水处理微生物都处于较强的活性状态下,微生物的良好状态的作用下,污水厂的整体运行处于一个较好的运行状态中,在冬季为之发愁的污泥老化、膨胀、泡沫都缓解了很多,但是随着夏季的到来,也会出现一些特别的情况,比如近期比较容易出现的磷的上升。
上一篇探讨了基于生物池的精细化的管理对仪表的需求变化,高标准的出水水质要求带来了对生物处理过程进行控制需求,人工监测无法满足生物处理的复杂而变化的工艺过程的参数监测,在线检测的仪表被用于过程控制来提升工艺管理水平成为污水厂新的管控思路,那么如何在生物池内的设置在线监控来提升过程管控能力呢?
磷的去除有化学除磷、生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮
这一篇将继续根据同一套图纸来讨论改良型A2O工艺的多点进水的分布意义以及运维管理中如何应用。对出水总磷总氮的在线监控的要求,使污水厂设计更注重了生物除磷脱氮的设计,在生活污水厂中,高氮磷进水难以稳定达标的主要原因是进水碳源不能满足生物除磷脱氮的需求,因此合理的、最大程度的利用进水中
北极星水处理网获悉,太原北郊污水处理厂一期改造主体工程已于近日完工,具备通水条件,正在进行最后的道路和园林绿化等收尾工程。工程完工后,该厂的污水处理能力将提升一倍,由原先的每日4万吨提升至每日8万吨。北郊污水处理厂是华北地区第一座污水处理厂,建于1959年,服务范围包括上兰村至赵庄、滨
生物脱氮除磷(BiologicalNutrientRemoval,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。一、A2/O工艺1、厌氧池图1为传统的A2/O工艺流程,首段为厌氧池,本池的主要作用为释
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
编者按:污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化
【社区案例】马上入冬了,昨天水温连续下降了接近10度,现在氨氮持续升高中,北方的朋友们介绍介绍经验。生物脱氮对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污
在上个月的《水星漫谈》里,小编介绍了一篇WEFTEC的杂志《WaterEnvironmentTechnology(WET)》的文章,讲的是低C/N的生物脱氮除磷案例。除了案例之外,文中的图片也吸引到小编的注意。小编发现,文中污水厂的照片来自一个PaulCockrellPhotography的工作室。在此之前,小编已经在其他地方看到过此人名字
AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,硝化菌进行硝化反应,氨氮转化为硝化氮并回流到缺氧段,反硝化细菌在缺氧池利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成游离态氮,同时获得同时去碳和脱氮的效果。一、生物脱氮的基本原理传统的生
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
微生物的世界里面生活着一种细菌,天生娇贵,禁不起雨,经不起浪。它就是污师们又爱又恨的硝化细菌。生物脱氮的骁将,微生物界的贵族!像这样优秀的菌,为何这么难培养?看完下面这些控制条件你就知道了!一、硝化系统的培养硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
上周工艺细节管理对生物池的硝化反应进行了全面的细节讨论,这周开始对脱氮的第二步反硝化反应的工艺细节管理进行探讨,欢迎大家持续关注并参与讨论。在传统的生物脱氮理论中,氮的去除需要经过氨氮在有氧条件下被硝化菌硝化为亚硝酸根和硝酸根,而后在缺氧环境中被反硝化菌利用有机物转换为氮气释放到
5月21日,海南长流污水厂系统提质增效“一厂一策”项目(一期)施工图设计项目中标候选人公示,第一中标候选人上海市政工程设计研究总院(集团)有限公司,投标报价1640000.00元,招标人海口市路桥建设投资有限公司。
近日,赣州市政公用集团水务公司实施的污水厂网一体化两个子项目:白塔污水处理厂二期三期扩容改造项目、四阀互通闸门井工程,按照项目建设节点要求,顺利完成通水目标,有效提升了市中心城区污水处理能力和污水收集率,极大助力周边环境改善。白塔污水处理厂二期三期扩容改造项目,目前已完成三期生反
近日,中国土木工程学会公布第二十届第二批中国土木工程詹天佑奖入选工程名单,高安屯污泥处理中心及再生水厂工程、广州市中心城区生态型市政污水厂工程、津沽污水、再生水、污泥循环经济示范项目三项污水处理工程入选。关于公布第二十届第二批中国土木工程詹天佑奖入选工程名单的通知第二十届第二批中
10月25日,全国公共资源交易平台发布了金桥工业污水厂高品质再生水及资源化利用工程EPC总承包中标结果公示,中标人为中国市政工程华北设计研究总院有限公司,中标价约4.15亿元,工期380日历天。建设地点:金桥开发区金桥污水处理厂西侧。建设规模:建设3.0万m3/d高品质再生水厂一座,主要由预处理+双膜
近日,由中建市政西北院设计的目前国内最大的污水厂尾水排海工程——嘉兴市污水处理扩容工程外排三期(排海管扩容部分)主顶管顺利顶通,并在项目现场举行主顶管完成仪式。仪式上嘉兴水务集团向中建市政西北院赠送“服务一流、设计精湛”锦旗。该项目设计排海规模110万吨/天,排海水平主顶管管径DN3200
随着城市的快速发展,主城区原有的污水管网已难以满足污水量快速增长需要。为此,邯郸市围绕城市污水厂互联互通和城乡结合部、老旧小区外围、城中村外围污水管网全覆盖的目标,积极谋划实施了污水管网新建改建项目,争取到中央资金2亿多元,新建改建污水管网55公里公里,并同步实施7公里污水管网内衬修
邯郸市市政排水管理处为确保厂、站、网一体化运维中的安全性、可靠性,杜绝水污染事件发生,在应急故障、抢险抢修、建设改造、施工导流、高峰分流以及各污水厂间调剂水量时,改变以往封堵管道、设置水泵抽水导流的做法,创新措施根据运行需要实现相互自流调剂水量,城区4个污水厂收水系统之间均增建了
近日,无锡市标准最高、规模最大的地下污水厂由上海市政总院牵头总承包,项目计划创新采用EOD模式,让绿水青山真正变成“金山银山”。什么是EOD模式?EOD模式,即生态环境导向的开发模式,是指统筹实施生态治理项目和关联产业项目相结合的多元业态,将生态环境治理带来的经济价值内部化,解决环保工程
作为污水厂来说,特别是市政污水厂,从理论上来说,是不需要进行做调节池的设计的,因为从理论上说,完全收集城镇居民的生活污水的市政污水厂,可以利用市政管网的存蓄能力,以及污水提升泵的运行管理来进行水质水量的平衡运行。但是在我国实际的城市建设中,雨污合流的污水收集系统还是大量存在的,这些年来的气候变化的异常,导致各地的雨水远远高于原有的气象资料,导致雨水大量进入到污水厂内,雨季对污水厂造成的冲击越来越严重,在各地主管部门的要求下,以及污水厂自身的运行需求,很多污水厂通过建设调节池来进行特殊情况下的污水均质均量的运行管理。
大部分市政污水厂均采用成本最低廉的自然界微生物作为污水处理的核心,自然界的微生物对污染物质采取不同方式的降解,其中对有机物的降解主要依靠好氧微生物在氧气充足的情况下完成,还有就是生物脱氮的硝化过程和生物除磷的过量吸附磷的过程,需要在好氧的环境中进行。针对这些污染物质的去除的不同种类的微生物都有一个共同的需求,就是在氧气充足的环境下进行。因此在污水厂中,保证充足的氧气供给是出水水质稳定的必要因素。
由于市政污水处理厂中污泥的堆积会产生有害物质从而对环境造成二次污染,因此市政污泥的处理一直是环境保护中关注的重点。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!