登录注册
请使用微信扫一扫
关注公众号完成登录
由图1可知,进水中氮素在生物处理过程中经历了由多种不同细菌参与的转化过程,由于细菌是生物转化的“执行者”,假如环境条件对于负责某项功能的细菌不利,那么这一部分转化过程就可能出现问题。在工程中为改善生化系统脱氮性能,调试人员大多会从溶解氧含量、有机物含量、碱度及环境条件冲击等几方面入手。其实,在这些宏观参数的调节背后,技术人员所做的一切都是为了更好地满足脱氮过程中不同微生物的生长代谢特点,简单来说就是“投其所好”。因此,借鉴这一微生物视角对污水处理生化系统进行分析,为执行特定功能的微生物提供更好的生长代谢条件,就可以帮助我们更好地实现高效脱氮。
2.2 传统生物脱氮细菌特点
本文简单总结传统生物脱氮不同功能微生物的特点如图2所示,供大家参考。在实践中,大家可根据针对对象及功能菌群菌的特点,通过参数调节促进那些我们所需要的微生物的良好生长代谢。
由图2可知,氨化细菌可以利用有机物获取能量并进行生长代谢,且其在好氧和缺氧环境都可生长,这些特点使得氨化细菌生长迅速、分布广泛,在生化系统中很少成为问题所在。因此,我们主要探讨亚硝化菌、硝化菌和反硝化菌。
2.2.1 亚硝化菌
亚硝化菌主要参与系统中氨氮被氧化为亚硝酸盐的过程,是生化系统中氨氮去除的主要功能菌。从微生物学角度来看,亚硝化细菌是一类在好氧条件利用无机碳源合成自身菌体、利用氧化氨氮释放能量的化能(能量来源)-好氧(溶氧要求)-自养(碳源类型)细菌。
针对碳源类型,亚硝化菌需要利用无机碳源进行合成代谢,亚硝化细菌生长缓慢,在生化系统中所占总量较小,因此其对于外界环境影响较为敏感,低温环境、负荷冲击、毒物流入、污泥流失等不良条件均可能导致亚硝化菌活性下降,使得系统出现氨氮去除率低,出水氨氮偏高的现象;针对能量来源和溶氧要求,亚硝化菌通过在好氧环境下氧化氨氮获取化学能供给自身的生长代谢,因此充足的溶解氧以及适宜的氨氮浓度是维持亚硝化菌良好生长的必需条件。此外,由于亚硝化过程会导致系统碱度下降,而亚硝化菌的最适pH值范围约为在7.0-7.5,因此应注意曝气池pH值,避免pH值过低导致亚硝化菌活性下降,氨氮去除不佳。
2.2.2 硝化菌
硝化菌主要参与系统中亚硝酸盐被氧化为硝酸盐的过程,其与亚硝化细菌经常出现在相近区域,特点也较为相似。从微生物学角度来看,硝化细菌是一类在好氧条件利用无机碳源合成自身菌体、利用氧化亚硝酸盐释放能量的化能(能量来源)-好氧(溶氧要求)-自养(碳源类型)细菌。
针对碳源类型,硝化菌需要利用无机碳源进行合成导致其生长缓慢,在生化系统中所占总量较小,因此其对于外界环境影响较为敏感,低温环境、负荷冲击、毒物流入、污泥流失等不良条件均可能导致硝化菌活性下降,使得好氧池中出现亚硝酸盐积累的现象;针对能量来源和溶氧要求,硝化菌通过在好氧环境下氧化亚硝酸盐获取化学能供给自身的生长代谢,因此充足的溶解氧以及适宜的亚硝酸盐浓度(主要来自于氨氮被氧化生成的亚硝酸盐)是维持硝化菌良好生长的必需条件。此外,由于硝化过程会导致系统碱度下降,而硝化菌的最适pH值范围约为在7.0-8.0,因此应注意曝气池pH值,避免pH值过低导致硝化菌活性下降。
2.2.3 反硝化菌
反硝化菌主要参与系统中硝酸盐及亚硝酸盐被还原的过程,是生化系统中硝酸盐氮去除的主要功能菌。从微生物学角度来看,常规的反硝化细菌是一类在缺氧条件利用有机碳源合成自身菌体、利用氧化有机物释放能量的化能-缺氧-异养细菌。在反硝化过程中,有机物充当电子供体,硝酸盐充当电子受体,在电子传递过程中,有机物失去电子被氧化,硝酸盐得到电子被还原,化学能被释放用于微生物的合成及其他生命活动。
由于反硝化菌可以利用有机碳源,其生长较快,污水处理中生化系统污泥普遍存在大量反硝化细菌,占据较大的生物量比例。因此,为了促进硝酸盐在反硝化过程中被去除,充足的有机碳源、良好的缺氧环境是必不可少的。有机碳源方面,进水提供的有机物的可生化性(BOD/COD比例)和含量(BOD/TN比例)多用于判断有机物碳源是否适宜并足够系统用于脱氮去除。溶解氧方面,由于好氧条件下氧气会取代硝酸盐充当细菌电子传递中的电子受体,导致反硝化无法顺利进行,同时好氧下反硝化细菌用于反硝化的硝酸盐还原酶及相关酶系会受到抑制,也导致反硝化无法进行。
3 新型生物脱氮过程
传统生物脱氮理论积累多年,并在工程实践中广泛应用,但也存在一些不足。由于传统脱氮中硝化与反硝化过程对于溶解氧与有机物需求不同,这导致硝化与反硝化很难在时间与空间上完全同步发生在同一环境内,如何能够减少外加碳源的投加、缩短脱氮过程流程、降低构筑物占地一直是研究热门。在研究人员对生物脱氮中物料守恒、能量代谢等方面的持续关注下,一些相对新颖的生物脱氮过程逐渐被提出并完善,接下来本文将对几种常见新型生物脱氮过程进行简单介绍。
3.1 新型生物脱氮汇总
近年来,短程硝化、厌氧氨氧化、好氧反硝化等新型生物脱氮过程逐渐引起人们注意,图3汇总了近年来常见新型生物脱氮理论。标红处是该项新型生物脱氮过程与传统生物脱氮过程的区别所在。
3.2 厌氧氨氧化VS好氧氨氧化
传统生物脱氮中,氨氧化(即亚硝化)过程为好氧过程,细菌需要溶解氧作为电子受体实现氨氮的氧化。从1989年欧洲科学家在厌氧反应器中发现了厌氧氨氧化现象起,越来越多的厌氧氨氧化研究报告拓展了我们对于生物脱氮的认知范围。除了污水处理,厌氧氨氧化还被发现存在于地球上的多种自然环境,其对于地球范围内氮素循环的贡献不容忽视。
厌氧氨氧化细菌可以在厌氧环境下以氨氮为电子供体、以亚硝酸盐为电子受体,产生氮气和少量硝酸盐。由于厌氧氨氧化菌一般呈现红色,因此也常常被称为“红菌”。厌氧氨氧化菌是自养微生物,以二氧化碳等无机物为碳源进行自身生长合成。由于厌氧氨氧化无需好氧曝气条件与有机碳源,其在曝气能耗削减与有机碳源节约方面有着显著优势,因此近年来厌氧氨氧化成为发展最迅猛的新型脱氮理论之一。由于需要亚硝酸盐作为电子受体,厌氧氨氧化常与短程硝化结合,通过短程硝化将部分氨氮氧化为亚硝酸盐,并与剩余氨氮进行厌氧氨氧化反应。
在工艺设计中,短程硝化与厌氧氨氧化过程可在同一工段进行,也可分为两段进行。目前厌氧氨氧化技术在国内外已有中试乃至实际规模运行案例,相比于主流厌氧氨氧化(污水处理的主线流程),污水处理厂的侧流(污泥处理中的消解液)厌氧氨氧化处理发展较快,这是由于侧流厌氧氨氧化过程中有机物浓度、氨氮浓度、温度等相关因素较为理想,而主流过程中则存在较多不利于厌氧氨氧化的条件,因此主流厌氧氨氧化的扩大与推广仍存在不少技术问题有待解决。此外,基于颗粒污泥技术的短程硝化-厌氧氨氧化技术也是研究热门。
3.3 短程硝化VS全程硝化
传统硝化过程是从氨氮到亚硝酸盐再到硝酸盐的全程硝化,而短程硝化一般指代从氨氮到亚硝酸盐这一过程。由于氨氮和亚硝酸盐的好氧转化都需要消耗溶解氧,短程硝化相比于全程硝化可以节约曝气的电能消耗。目前,短程硝化主要存在两种主要研究方向,其一是与厌氧氨氧化偶联,由短程硝化为厌氧氨氧化中提供亚硝酸盐来源,其二是与短程反硝化偶联,实现氮素的最终去除。短程硝化的实现主要依靠选择性抑制硝化菌活性,技术原理在于亚硝化菌与硝化菌对于一些环境因素的耐受能力不同,溶解氧、pH值、温度、游离氨等因素都已被研究用以选择性抑制硝化菌,以实现短程硝化。现阶段短程硝化的主要技术问题在于:如何在不同环境下(温度、有机物含量等因素)实现对于氨氮到亚硝酸盐这一转化过程的长期稳定维持。
3.4 好氧反硝化VS缺氧反硝化
传统生物脱氮理论中,反硝化过程需要在缺氧环境下进行,而近年来不断有新菌株被发现具有在好氧环境下进行硝酸盐还原的能力,这类菌株被称为好氧反硝化菌,它们可以在好氧条件下同步去除硝酸盐与有机物,并可通过同化或异养硝化作用去除氨氮。好氧反硝化菌的出现,使得在好氧环境下进行同步硝化-反硝化过程成为可能。
好氧反硝化细菌之所以能在好氧环境下进行反硝化,可能是由于细菌内部含有在有氧环境下能够正常表达的与脱氮相关的酶系统(酶是微生物转化氮素的实际“执行者”,微生物体内酶的活性决定了相对应的功能发挥情况),如周质硝酸盐还原酶等;此外在污泥絮体或生物膜中溶解氧的梯度变化也可能促进了好氧反硝化的进行。目前已有大量好氧反硝化细菌被筛选鉴定并考察相关脱氮性能,采用好氧反硝化细菌作为菌种来源的微生物菌剂也逐渐出现,然而好氧反硝化理论仍需不断完善,其准确机理仍在探索中,同时,关于好氧条件的准确界定也需要进一步探讨。
3.5 自养反硝化VS异养反硝化
传统反硝化过程需要以有机物作为电子供体及碳源以供细菌获取能量并合成自身菌体,这些反硝化细菌属于异养型细菌。其实,反硝化的本质在于细菌在还原硝酸盐的过程中获取能量,细菌并不在意这个过程叫什么,他们想要获取的只是反应过程中释放的化学能,至于硝酸盐变为氮气只是获取能量中的副产物。因此,在自养反硝化过程中,自养细菌采用无机物作为电子供体,将硝酸盐还原并从中获取化学能量用于合成及其他生命活动。
相比于异养反硝化,自养反硝化不需要有机物作为碳源和能源,因此较为适合用于低碳氮比废水或低有机物浓度废水的脱氮过程。目前,已发现可以作为自养反硝化电子供体的物质包括氢气、硫、硫离子、硫化氢、硫代硫酸盐、亚硫酸盐、硫氰酸盐、二价铁、零价铁、二价锰等。考虑到自养反硝化菌的功能菌为自养菌,如何快速高效地获得大量自养反硝化菌,并将其长期稳定存留于生化系统中是自养反硝化能否进一步发展的关键技术问题。
3.6 短程反硝化VS全程反硝化
传统生物脱氮中反硝化一般包括从硝酸盐到氮气的全程反硝化过程,而短程反硝化则可理解为全程反硝化过程中的一部分,具体囊括过程则根据需要而定。由于反硝化过程是电子供体,考虑到常见异养反硝化的电子供体为有机物,短程反硝化相比于全程反硝化所需要的电子供体更少,因此可以有效减少碳源消耗。目前,短程反硝化主要存在两种主要研究方向,其一是与厌氧氨氧化偶联,通过保持硝酸盐还原到亚硝酸盐为厌氧氨氧化提供亚硝酸盐来源,其二是与短程硝化偶联,将短程硝化产生的亚硝酸盐还原至氮气实现短程硝化反硝化。现阶段短程反硝化的主要技术问题包括:如何长期稳定高效地实现反硝化过程的针对性控制,以及如何降低反硝化过程中一氧化二氮等温室气体的排放量。
4 总结与展望
(1)污水生化处理的核心是微生物,一线技术人员对工艺参数与环境条件的调试应在考虑成本的前提下尽量实现对特定微生物的针对富集,为特定微生物的生长代谢提供良好条件是关键。
(2)传统生物脱氮理论与新型生物脱氮理论的发展建立在特定微生物的特定功能这一基础上。针对不同类型污水,不同的脱氮理论与工艺可能存在自身优势与限制,无法进行绝对化的一概而论。
(3)生物脱氮理论的探讨与工程实际并不矛盾,充分了解生物脱氮过程及其功能细菌的特点可以更科学高效地指导我们的运行与调试工作,同时现场工作中的第一手资料则为理论分析提供依据。
(4)尽管新型生物脱氮理论的发展大多仍处于小试与中试规模,其在实际规模与环境条件下的扩大与应用尚需解决大量技术细节与实践限制,这些理论在未来污水处理过程中的宝贵价值不容忽视。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,中国城镇供水排水协会(简称“中国水协”)正式发布了2024年度中国水协科学技术奖励的决定,由中建环能科技股份有限公司牵头,中国科学院生态环境研究中心、嘉兴市联合污水处理有限责任公司等单位共同完成的“节碳型污水深度脱氮技术及模块化装备研发与应用”项目,荣获2024年度中国水协科学技术
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
编者按:德国早在20世纪末便开始关注污水处理厂碳中和与能量中和问题。位于德国布伦瑞克市(Braunschweig)运行半个多世纪的老厂Steinhof(斯泰因霍夫)自1954年投入运行以来,注重耗能与产能的平衡,其在能量回收、碳减排方面颇具成效,是能量与资源回收的成功典范。该案例早在2014年便在《中国给水排水》予以介绍,现再次回溯,以期为国内污水处理碳中和提供参考。
目前我国水污染形势依然严峻,氮素等污染物的排放标准日益严格,新高效脱氮工艺的发展需求迫切。近20年来,膜曝气生物膜反应器(membraneaeratedbiofilmreactor,MABR)作为一项颇具节能潜力的技术,凭借其高效脱氮、占地面积小等优势,在未来污水处理的节能减耗,污水厂的升级改造中显得尤为重要。
强化生物除磷(EBPR)工艺被广泛应用于污水脱氮除磷,其机理和相对于化学除磷工艺的优势在此不再赘述,我们传统认知均以Accumulibacter菌(A菌)作为主要的PAOs菌,生物除磷数学模拟技术也是以A菌的代谢作为PAOs代谢进行模拟。
氮污染是一个典型的全球环境问题,长期威胁着人类健康和水生态安全。传统基于异养反硝化的硝酸盐去除工艺强烈依赖于有机碳源,在实际工程中会产生高的工艺运行成本和二次污染风险。因此,如何在无额外碳源添加下实现高效生物反硝化是目前污水脱氮过程的关键技术瓶颈。针对上述问题,由清华大学牵头,中
由于工业化进程的加速,氮、磷的污染问题日益尖锐化。越来越多的国家地区制定了更为严格的污水氮、磷的排放标准。尤其是氮的考核内容也从单一的氨氮指标发展到总氮(氨态氮、硝态氦和有机氮的总和)的考核指标。由于近年来一些新理论的提出,如使污水脱氮实现短程硝化反硝化。这样不仅可以提高细菌的增长
本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。01、污水脱氮方法简介目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法
近日,笔者采访了一位在浙江省负责污水厂运营的资深人士(负责多个污水厂的技术及运行管理,具有20年的从业经验),请他从运营的视角,谈谈浙江省污水脱氮的现状及需求,以及对不同生活污水脱氮技术的感受,他们又在关注哪些新技术?Q:请您讲讲目前浙江污水处理厂新一轮提标的要求和现状,重点考核指
北京、昆明、巢湖、太湖等重点区域及流域作为环保的推动者,对污水处理提出了越来越高的要求。TN排放标准从20mg/L(一级B)、15mg/L(一级A),提升为10mg/L,甚至5mg/L(昆明A标),逐渐向极限脱氮迈进。然而,在当前提标改造的脱氮技术路线中,一些脱氮工艺存在通过碳源增加带来药剂成本的大幅提高,以及场
北极星水处理网获悉,太原北郊污水处理厂一期改造主体工程已于近日完工,具备通水条件,正在进行最后的道路和园林绿化等收尾工程。工程完工后,该厂的污水处理能力将提升一倍,由原先的每日4万吨提升至每日8万吨。北郊污水处理厂是华北地区第一座污水处理厂,建于1959年,服务范围包括上兰村至赵庄、滨
生物脱氮除磷(BiologicalNutrientRemoval,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。一、A2/O工艺1、厌氧池图1为传统的A2/O工艺流程,首段为厌氧池,本池的主要作用为释
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
编者按:污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化
【社区案例】马上入冬了,昨天水温连续下降了接近10度,现在氨氮持续升高中,北方的朋友们介绍介绍经验。生物脱氮对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污
在上个月的《水星漫谈》里,小编介绍了一篇WEFTEC的杂志《WaterEnvironmentTechnology(WET)》的文章,讲的是低C/N的生物脱氮除磷案例。除了案例之外,文中的图片也吸引到小编的注意。小编发现,文中污水厂的照片来自一个PaulCockrellPhotography的工作室。在此之前,小编已经在其他地方看到过此人名字
AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,硝化菌进行硝化反应,氨氮转化为硝化氮并回流到缺氧段,反硝化细菌在缺氧池利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成游离态氮,同时获得同时去碳和脱氮的效果。一、生物脱氮的基本原理传统的生
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
微生物的世界里面生活着一种细菌,天生娇贵,禁不起雨,经不起浪。它就是污师们又爱又恨的硝化细菌。生物脱氮的骁将,微生物界的贵族!像这样优秀的菌,为何这么难培养?看完下面这些控制条件你就知道了!一、硝化系统的培养硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
上周工艺细节管理对生物池的硝化反应进行了全面的细节讨论,这周开始对脱氮的第二步反硝化反应的工艺细节管理进行探讨,欢迎大家持续关注并参与讨论。在传统的生物脱氮理论中,氮的去除需要经过氨氮在有氧条件下被硝化菌硝化为亚硝酸根和硝酸根,而后在缺氧环境中被反硝化菌利用有机物转换为氮气释放到
4月1日,南阳市白河南污水处理厂二期工程设备及配套设施项目中标结果公告。山东国智经贸有限公司中标,中标金额182611571.03元。
4月1日,云南文山市污水处理厂老旧设备设施提标改造项目(设备及附属设施建设项目)设计施工总承包(EPC)二次招标公告。文山市污水处理厂老旧设备设施提标改造项目(设备及附属设施建设项目)设计施工总承包(EPC)二次招标公告1.招标条件本招标项目“文山市污水处理厂老旧设备设施提标改造项目(设备
3月14日,生态环境部公布第五批全国环保设施和城市污水垃圾处理设施开放单位名单。新增253家,撤销146家。详情如下:
3月13日,江西赣州市中心城区污水处理设施提质增效工程设计采购施工(EPC)总承包项目招标公告发布。详情如下:
3月12日,山东烟台新建八角污水处理厂及配套附属设施建设项目特许经营中标候选人公示。第一中标候选人:北京首创生态环保集团股份有限公司,、四川青石建设有限公司,首创(香港)有限公司,投标报价:初始污水处理服务费单价报价:4.21元/m,融资利率:2.9%;第二中标候选人:北控水务(中国)投资有限
3月12日,贵州紫云自治县城镇生活污水处理设施更新改造提升工程施工、设计(EPC)中标候选人公示。第一中标候选人:中速(贵州)建筑工程有限公司;第二中标候选人:贵州爻达建设集团有限公司;第三中标候选人:贵州隆瑞建设有限公司。该项目对10座污水处理厂进行设备更新改造,设计处理总规模4140m3/d
3月6日上午,六国威立雅污水处理设施提标改造工程项目开工仪式在横港化工园区管理处举行。威立雅中国大陆地区首席运营官顾丽华,区委常委、狮子山高新区党工委书记、管委会主任李梅生,狮子山高新区党工委委员、管委会副主任邢光才,狮子山高新区党工委委员、横港化工园区管理处主任汪仙军等出席仪式。
3月5日,安徽太湖县污水处理设施运维特许经营(TOT)项目招标公告发布。详情如下:太湖县污水处理设施运维特许经营(TOT)项目招标公告1.招标条件太湖县城市管理局作为太湖县污水处理设施运维特许经营(TOT)项目(以下简称“本项目”或“项目”)实施机构,根据《太湖县人民政府第三十九次常务会议纪
3月5日,江西修水县中心城区水环境综合治理工程项目(修水县黄田里生活污水处理厂及配套设施建设项目一期)EPC+F+O中标结果公示。江西省恒厦建设有限公司中标,中标价5.9亿元。
3月4日,云南砚山县城北片区污水处理基础设施建设项目(一期)EPC招标公告发布。标段合同估算价:16560.2万元。本次招标内容:(1)污水处理厂工程:项目污水处理厂规划总用地约23770.14㎡(35.66亩),建构筑物总建筑面积7116.48㎡,其中:构筑物建筑面积4555.88㎡,建筑物建筑面积2560.60㎡,并配套
随着长三角生态绿色一体化发展示范区先行启动区建设的深入推进,区域人口集聚与产业升级步伐加快,华为练秋湖研发中心等重大项目的落成带动用水需求激增,西岑水质净化厂于2025年1月正式投入商业运行。这一重大工程不仅标志着示范区基础设施升级迈出关键一步,更以科技赋能生态治理,为区域高质量发展
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!