北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复综合技术正文

分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复

2019-06-12 14:44来源:微生物学通报作者:闫潇关键词:硫酸盐还原菌活性污泥修复收藏点赞

投稿

我要投稿

9.png

3 讨论与结论

硫酸盐还原菌能够固化铅锌冶炼渣中的重金属,具有很好的工业应用前景,研究其对重金属修复的可行性具有很重要的意义。Cabrera等发现从污泥中分离的硫酸盐还原菌在厌氧环境中修复重金属尾矿效果显著[28];Joo等将脱硫菌(Desulfovibrio desulfuicans)应用到含有镉、镍和铬多种重金属环境中修复实验结果表明,其去除率分别可达到99.90%,98.31%和74.20%,并生成重金属硫化物沉淀[29]。通过对铅锌冶炼渣化学成分和矿物组成分析可知,该渣样主要成分为硫酸盐类物质,其中包括硫酸钙(CaSO4)、硫酸锌(ZnSO4)和硫酸铁类物质(Fe(SO4)2(OH)5H2O)等;该结果与冶炼过程中所选的药剂和渣样前期添加还原剂处理有关(硫化物及铁系盐),但由于受环境中各因子及土著氧化菌的影响,往往会造成重金属的再次“返溶”。为了实现持久稳定地固化冶炼渣中的重金属,本研究接种硫酸盐还原菌于铅锌冶炼渣中,在修复过程中,系统中环境电位降低、pH 升高且各重金属化学形态及浓度发生变化,各重金属稳定态含量增加,可交换态含量减少,所以系统溶液中各离子浓度降低。冶炼渣中硫酸盐还原过程主要是硫酸盐还原菌通过传递电子给系统中的硫酸根,产生为S2−,S2−具有还原性,其与冶炼渣中重金属结合生成金属硫化物沉淀[30-31]是一个耗酸的过程,从而引起 pH的升高,环境电位降低。尾矿堆和冶炼渣场中存在多种微生物[32-35],包括氧化菌(Acidithiobacillus ferrooxidans、Leptospirillum ferrooxidans、Leptospirillum ferriphilum)和还原菌(SRB、Pseudoobactrum sacolyticum、Stenotrophomonas sp.)等[36-38],其中在嗜酸氧化菌的作用下会源源不断地溶出重金属形成恶性循化。本实验取不同修复时段样品,对微生物群落结构变化进行分析[39-40],所测样品的 Desulfovibrio 的含量从32.22%增加至63.72%,成为冶炼渣修复过程中的优势菌,且原渣样中主要菌群(Bacillus、Exiguobacterium 和Acidithiobacillus)含量逐渐减少[41]。该过程硫酸盐还原菌成为主要菌群,将铅锌冶炼渣中恶性循环变为良性循环。综上所述,硫酸盐还原菌可用作重金属污染修复的固化药剂。

参考文献

[1] Park JH, Bolan N, Megharaj M, et al. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. Journal of Hazardous Materials, 2011, 185(2/3): 829-836

[2] Han GQ, Wang B, Xu WH, et al. Effects of heavy metal compound contamination of Cd, Zn, Cu and Pb on soil biological activity[J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1236-1242 (in Chinese)韩桂琪, 王彬, 徐卫红, 等. 重金属 Cd、Zn、Cu 和 Pb 复合污染对土壤生物活性的影响[J]. 中国生态农业学报, 2012, 20(9): 1236-1242

[3] Li MJ, Wang CL, Li RC, et al. Microorganism remediation of Hg, Pb and Cr contaminated soil[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1568-1572 (in Chinese)李梦杰, 王翠玲, 李荣春, 等. 汞、铅、铬污染土壤的微生物修复[J]. 环境工程学报, 2013, 7(4):1568-1572

[4] Wang YY, Li FF, Song J, et al. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural

soil using red mud: a field experiment[J]. Environmental Geochemistry and Health, 2018, 40(5): 2143-2153

[5] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166

[6] Lim MW, Lau EV, Poh PE. A comprehensive guide of remediation technologies for oil contaminated soil— Present works and future directions[J]. Marine Pollution Bulletin, 2016, 109(1): 14-45

[7] Hrynkiewicz K, Baum C. Application of microorganisms in bioremediation of environment from heavy metals[A]//Malik A, Grohmann E, Akhtar R. Environmental Deterioration and Human Health[M].Dordrecht: Springer, 2014: 215-227

[8] Pociecha M, Lestan D. Novel EDTA and process water recycling method after soil washing of multi-metal contaminated soil[J]. Journal of Hazardous Materials, 2012, 201-202: 273-279

[9] Li YY, Liang JL, He X, et al. Kinetics and mechanisms of amorphous FeS 2 induced Cr(VI) reduction[J].Journal of Hazardous Materials, 2016, 320: 216-225

[10] Cason ED, Williams PJ, Ojo E, et al. Hexavalent omium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates[J]. World Journal of Microbiology and Biotechnology, 2017, 33(5): 88

[11] Braud AM, Hubert M, Gaudin P, et al. A quick rhizobacterial ion tests for the remediation of copper contaminated soils[J]. Journal of Applied Microbiology, 2015, 119(2): 435-445

[12] El Aafi N, Brhada F, Dary M, et al. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant Rhizobacterium serratia sp. MSMC541[J]. International Journal of Phytoremediation, 2012, 14(3): 261-274

[13] Banerjee G, Pandey S, Ray AK, et al. Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expressionin presence of lead, cadmium, and nickel[J]. Water, Air, & Soil Pollution, 2015, 226(4): 91

[14] Liu M, Zheng R, Bai SL, et al. Advances of species diversity of arbuscular mycorrhizal fungi[J].Microbiology China, 2016, 43(8): 1836-1843 (in Chinese)刘敏, 峥嵘, 白淑兰, 等. 丛枝菌根真菌物种多样性研究进展[J]. 微生物学通报, 2016, 43(8): 1836-1843

[15] Shi FY, Zhu YB. Application of statistically-based experimental designs in medium optimization for spore production of Bacillus subtilis from distillery effluent[J]. Biocontrol, 2007, 52(6): 845-853

原标题:分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

硫酸盐还原菌查看更多>活性污泥查看更多>修复查看更多>