北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复综合技术正文

分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复

2019-06-12 14:44来源:微生物学通报作者:闫潇关键词:硫酸盐还原菌活性污泥修复收藏点赞

投稿

我要投稿

[16] Kang CX, Wu PX, Li YW, et al. Estimates of heavy metal tolerance and omium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: omium(VI) toxicity and environmental parameters optimization[J]. World Journal of Microbiology and Biotechnology, 2014, 30(10): 2733-2746

[17] Zhao J, Chen MM, Hu HB, et al. Construction of Pseudomonas sp. GP72 rpeB mutant and its regulation on PCA and 2-OH-PHZ biosynthesis[J]. Microbiology China, 2015, 42(1): 3-8 (in Chinese)赵嘉, 陈明敏, 胡洪波, 等. 假单胞菌 GP72 rpeB 突变株的构建及其对吩嗪类抗生素合成的调控[J]. 微生物学通报, 2015, 42(1): 3-8

[18] Senko JM, Zhang GX, McDonough JT, et al. Metal reduction at low pH by a Desulfosporosinus species:implications for the biological treatment of acidic mine drainage[J]. Geomicrobiology Journal, 2009,26(2): 71-82

[19] Cabrera G, Pérez R, Gómez JM, et al. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains[J]. Journal of Hazardous Materials, 2006, 135(1/3): 40-46

[20] Aparicio J, Solá MZS, Benimeli CS, et al. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane[J]. Ecotoxicology and Environmental Safety, 2015, 116: 34-39

[21] Govarthanan M, Mythili R, Selvankumar T, et al. Isolation and acterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from omium-contaminated soil[J].Biotechnology and Bioprocess Engineering, 2017, 22(2): 186-194

[22] Guo YR, Liu YS. Experiment on dissolution of Pd and Zn in heavy metals contaminated agricultural soil by functional microorganisms[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1191-1196(in Chinese)郭彦蓉, 刘阳生. 功能微生物对污染农田土壤中铅锌的溶出实验[J]. 环境工程学报, 2014, 8(3):1191-1196

[23] Chen HY, Fan T, Zhang Z, et al. Effects of four plants on soil microbial biomass and soil enzyme activity in heavy metal combined polluted soil[J]. Environmental Protection, 2018, 46(1): 65-69 (in Chinese)陈海燕, 樊霆, 张泽, 等. 不同植物修复重金属复合污染土壤对土壤中微生物数量与酶活性的影响[J]. 环境保护, 2018, 46(1): 65-69

[24] Fang X, Tian DL, Wu LH, et al. Effects on soil microorganisms and enzyme activity of re-vegetation in the slag wasteland of Xiangtan manganese mine[J]. Journal of Soil and Water Conservation, 2009, 23(4):221-226 (in Chinese)方晰, 田大伦, 武丽花, 等. 植被修复对锰矿渣废弃地土壤微生物数量与酶活性的影响[J]. 水土保持学报, 2009, 23(4): 221-226

[25] Xing JJ, Lei Q, Qiu ZM, et al. Microbial community structure and diversity in waterlogged wood and lacquer named F446 by Illumina MiSeq technology[J]. Microbiology China, 2018, 45(8): 1685-1692 (in Chinese)幸晶晶, 雷琼, 邱祖明, 等. 应用高通量技术分析 F446 饱水木漆器中微生物群落结构多样性[J].微生物学通报, 2018, 45(8): 1685-1692

[26] Qi YY, Wu ML, Zhu CC, et al. Microbial community structure shift during bioremediation of petroleum contaminated soil using High Throughput Sequencing[J]. Environmental Science, 2019, 40(2): 869-875(in Chinese)祁燕云, 吴蔓莉, 祝长成, 等. 基于高通量测序分析的生物修复石油污染土壤菌群结构变化[J].环境科学, 2019, 40(2): 869-875

[27] Song SF, Yang F, Gao XF, et al. Effects of sewage treatment on microbial community structure of surface water in Xiantao wetland[J]. Microbiology China, 2019, 46(3): 512-521 (in Chinese) 宋淑芬, 杨帆, 高绣纺, 等. 湿地法处理生活污水对仙桃湿地地表水微生物群落结构的影响[J].微生物学通报, 2019, 46(3): 512-521

[28] Thavamani P, Samkumar RA, Satheesh V, et al. Microbes from mined sites: harnessing their potential for reclamation of derelict mine sites[J]. Environmental Pollution, 2017, 230: 495-505

[29] Joo JO, Choi JH, Kim IH, et al. Effective bioremediation of cadmium (II), nickel (II), and omium (VI) in a marine environment by using Desulfovibrio desulfuricans[J]. Biotechnology and Bioprocess Engineering, 2015, 20(5): 937-941

[30] Jong T, Parry DL. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides[J]. Journal of Colloid and Interface Science, 2004, 275(1): 61-71

[31] Alazard D, Joseph M, Battaglia-Brunet F, et al. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments[J]. Extremophiles,2010, 14(3): 305-312

[32] Liu XY, Chen BW, Chen JH, et al. Biogeographical distribution of acidophiles and their effects around the Zijinshan heap bioleaching plant[J]. Chemistry and Ecology, 2016, 32(5): 419-431

[33] Brierley CL, Brierley JA. Progress in bioleaching: Part B: applications of microbial processes by the minerals industries[J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7543-7552

[34] Sun M, Xiao TF, Ning ZP, et al. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2911-2922

[35] Xia LX, Dai SL, Yin C, et al. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(6): 845-851

[36] Abdollahi H, Noaparast M, Shafaei SZ, et al. Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite-molybdenite concentrate[J]. International Biodeterioration & Biodegradation, 2015, 104: 194-200

[37] Wang N, Lu XL, Wu MXJ, et al. Progress in microbial oxidation of As(III) and Sb(III)[J]. Microbiology China, 2017, 44(3): 689-700 (in Chinese)王年, 鲁小璐, 邬梦晓俊, 等. 微生物氧化 As(Ⅲ)和 Sb(Ⅲ)的研究进展[J]. 微生物学通报, 2017,44(3): 689-700

[38] Chen BW, Wu B, Liu XY, et al. Effect of CO 2 and N 2 on microbial community changes during column bioleaching of low-grade high pyrite-bearing chalcocite ore[J]. Journal of Central South University, 2015,22(12): 4528-4535

[39] Zhang MJ, Chen BW, Wang N, et al. Effects of heap-bioleaching plant on microbial community of the nearby river[J]. International Biodeterioration & Biodegradation, 2018, 128: 36-40

[40] Ahemad M, Kibret M. Recent trends in microbial biosorption of heavy metals: a review[J]. Biochemistry & Molecular Biology, 2013, 1(1): 19-26

[41] Shahi A, Aydin S, Ince B, et al. Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil[J].Chemical Engineering Journal, 2016, 306: 60-66




原标题:分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

硫酸盐还原菌查看更多>活性污泥查看更多>修复查看更多>