北极星

搜索历史清空

  • 水处理
您的位置:环保水处理市政污水评论正文

新冠肺炎疫情期间城镇污水处理厂消毒设施运行调研与优化策略

2020-02-26 14:09来源:中国给水排水作者:李激,等关键词:城镇污水处理厂消毒设施污水处理厂收藏点赞

投稿

我要投稿

臭氧具有接触时间短、无消毒副产物产生等优点,但也同样存在运行成本高、无持久性杀菌效果的缺点[19],因此应用较少,在本次调研中,仅1座污水处理厂采用该方式,且该厂使用臭氧工艺的主要目的是去除难降解COD,兼顾消毒功能。

由于受进水水质、污水处理工艺等多种因素的影响,我国城镇污水处理厂消毒处理单元情况较为复杂,本文针对以下4种常见情况分别给出建议:

①目前仍在单独使用紫外消毒的城镇污水处理厂,建议进行不同时间的粪大肠菌群光复活率实验,也可结合当地环境监督部门取样检测方法,判断能否满足实际要求;并充分考虑已有紫外消毒设施的紫外线剂量范围,确保在水量出现波动等最不利条件下出水粪大肠菌群数的达标排放。如无法满足上述要求,需考虑增设其他消毒方式;

②目前使用次氯酸钠消毒的城镇污水处理厂,建议关注药剂投加量,定期检测粪大肠菌群数等指标,掌握其与相关因素的关系,在确保出水粪大肠菌群数达标的情况下,尽量降低次氯酸钠的投加量,减少余氯对于受纳水体的影响;重视次氯酸钠药剂的存储、使用等管理,并关注次氯酸钠药剂中有效氯含量的变化,以及时调整药剂投加比例,确保消毒效果。

③目前使用二氧化氯消毒的城镇污水处理厂,建议对比设备厂家给出的有效氯数据和实际在污水消毒中可发挥作用的有效氯数据的差别(设备效率、检测时不同pH的影响等),加强二氧化氯发生设备的维护保养,并确保有可正常运行的备件;此外,需加强盐酸、氯酸钠等原料运输、保存、使用的管理,确保产品合格、使用合规,在确保出水粪大肠菌群数达标的情况下,尽量降低药剂的投加量,减少余氯对于受纳水体的影响。

④新建及扩建的城镇污水处理厂,在深度处理末端已设置了芬顿、臭氧等高级氧化工艺,且出水粪大肠菌群数稳定达标的情况下,可不另外单独设置消毒处理单元。

2.3 加氯消毒药剂投加量分析

由调研的污水处理厂消毒方式分布情况可知,目前大部分城镇污水处理厂采用加氯消毒。为确保加氯消毒效果,消毒工艺环节应当保证一定的消毒药剂投加量和接触时间,一般采用CT值(即接触时间T(min)×接触时间结束时消毒剂残留浓度C(mg/L))确定各污水处理厂相应的氯消毒参数,指导生产运行。鉴于目前我国尚缺乏针对粪大肠菌群数达标的普适性CT值数据,建议各地污水处理厂根据实际工艺运行摸索和总结适宜的CT值,以优化消毒工艺运行。当前可根据有效氯投加量、接触时间和出水余氯含量等参数调控消毒效果,同时加强出水悬浮物浓度的控制,确保出水的粪大肠菌群数稳定达标。


图3有效氯投加量分布


首先,含氯消毒药剂的投加量会直接影响尾水的消毒效果与经济成本,因此有必要对调研污水处理厂的有效氯投加量分布进行分析,掌握目前污水处理厂药剂投加量现状。由图3可知,在调研的城镇污水处理厂中,72%的污水处理厂有效氯投加量在1~4 mg/L的范围内,14%的污水处理厂的有效氯投加量过高,超过了6 mg/L,其中有效氯投加量最高的污水处理厂高达11.3 mg/L。这可能是因为部分小型污水处理厂存在进水水量波动较大,对药剂投加量计量不准确等问题,使得有效氯的投加量偏高。王雨等[20]针对次氯酸钠消毒过程中的消毒副产物进行了研究,发现随着次氯酸钠投加量的增加,消毒副产物三卤甲烷和二氯乙腈的生成量均随之增加。由此可见,过高的加药量容易造成出水消毒副产物的增加,易对受纳水体的生态环境造成损害[21]。

国内有很多学者研究了不同有效氯投加量对粪大肠菌群数的影响。李璐瑶[22]探究了不同浓度次氯酸钠投加量对二级出水消毒效果的影响,当次氯酸钠与二级出水的接触时间为30 min,当有效氯的投加量为3 mg/L,二级出水中的粪大肠菌群数能够低于1000 MPN/L,当提高有效氯的投加量为4 mg/L时,粪大肠菌群数可以控制在200 MPN/L以内。赵琳等[6]研究了30 min内有效氯投加量对灭活的影响,结果表明,当有效氯投量小于2.5 mg/L时,灭活率随着有效氯投量的增加而升高,在有效氯投加量为2.5 mg/L时,已经实现了100%的灭活,并建议污水处理厂在处理尾水时控制有效氯的投加量为2.5~3.0 mg/L。濮晨熹等[3]探究了接触反应时间为10 min时不同有效氯投量对MSBR工艺出水的消毒效果,发现当有效氯的投量大于3.3 mg/L时,出水的粪大肠菌群数可以达到一级A的标准。由上述文献中有效氯投加量与粪大肠菌群数的关系可以得知,对尾水中投加有效氯的量在2~4 mg/L范围内比较合理,能够保证粪大肠菌群数可以达到一级A的标准。

本研究团队对2座一级A排放标准的城镇污水处理厂出水进行次氯酸钠消毒实验研究,厂一接触时间30min,有效氯投加量为4 mg/L,实验期间水温17℃,出水粪大肠菌群数小于1000 MPN/L;厂二现场无消毒接触池,次氯酸钠投加后经管道混合,消毒接触时间约12min,实验期间水温14℃,次氯酸钠有效氯投加量需5mg/L出水粪大肠菌群小于1000 MPN/L。

出水中的氨氮等指标的浓度差异会对污水消毒中次氯酸钠投加量产生的影响较大。祝明等[23]研究了氨氮浓度对次氯酸钠消毒的影响,结果表明:水中总余氯的浓度随次氯酸钠投加量的增加呈先升高后降低再逐渐升高的趋势,整个反应过程符合折点加氯消毒理论;当次氯酸钠投加量与氨氮的比值为25:1时,氨氮消耗的次氯酸钠量最多,生成的总余氯量最少。何敏等[10]进一步研究了氨氮变化对次氯酸钠消毒效果的影响,发现随着氨氮浓度的升高,最佳次氯酸钠的投加量呈降低的趋势。而赵琳等[6]的研究结果却表明,在氨氮含量<15 mg/L,有效氯含量<0.6 mg/L时,随着氨氮浓度升高,次氯酸钠消毒效果降低。由此可看出:①目前国内学者对于城镇污水处理厂次氯酸钠消毒的工艺参数和运行效果尚缺乏统一的认识;②出水中氨氮等存在不一定会增加次氯酸钠的用量;③在不同的氨氮浓度和有效氯的组合下,次氯酸钠的消毒效果也存在一定的差异。因此有必要在规范条件下进行次氯酸钠加药量对氨氮、总余氯及粪大肠菌群数的关系进行系统的研究。鉴于当前大部分执行GB 18918-2002一级A标准的污水处理厂出水氨氮含量较低,表1调研数据中污水处理厂出水氨氮年平均值为0.41 mg/L,92%的污水处理厂出水氨氮年平均值小于1 mg/L,因此氨氮浓度对次氯酸钠的投加量影响相对较小,一般情况下不需考虑此指标的影响,只有当污水处理厂进水受有毒有害物质冲击影响,导致生化系统硝化性能大规模丧失的情况下,氨氮对于次氯酸钠的投加量会产生较大影响。

由于受进水水质、水量、消毒前粪大肠菌群数、接触时间和水温等因素影响,消毒药剂投加量会有所差异,各污水处理厂应关注药剂投加量,定期检测粪大肠菌群数等指标,掌握药剂投加量与相关因素的关系,及时调整加药量。我国《室外排水设计规范》(GB50014-2006)规定“无试验资料时,二级处理出水有效氯投加量可采用6mg/L~15 mg/L。”该数据是依据2003年6座污水处理厂的加氯消毒数据确定的,和当时的条件相比,当前的污水处理厂在运行工艺和出水水质(氨氮、SS、COD和粪大肠菌群数等)要求上有较大区别,所需加药量也会有较大差别。对当前大量污水处理厂加氯消毒设施运行调研、相关文献总结和大量实验室和现场验证的结果表明,执行GB18918-2002一级A标准的污水处理厂,消毒接触时间≥30min时,有效氯投加量控制在2.0~4.0mg/L范围内,粪大肠菌群数可达到排放标准要求;消毒接触时间<30 min时,需适当增大有效氯投加量。

2.4 加氯消毒接触时间分析

消毒接触时间对污水消毒效果会产生一定的影响。由图4可知,调研的污水处理厂消毒工艺的接触时间主要集中分布在11~30 min之间,所占的比例达到47.7%;同时也存在2%的污水处理厂消毒接触时间在60 min以上。但消毒接触时间少于10 min的污水处理厂仍占有27%的比例,17%的厂甚至不足2 min。这可能是由于部分的污水处理厂内并未设置专门的消毒接触池,因此仅依靠管道混合接触消毒;或设计的消毒接触池容量偏小,而进水水量超过了设计容量,使得接触时间较短。何敏等[10]探究了反应时间对次氯酸钠消毒效果的影响,结果表明,在反应时间低于2 min时,次氯酸钠消毒的效果较差,当反应时间在15~30 min时,次氯酸钠的消毒作用才可完全发挥,而超过30 min后,粪大肠菌群数则基本不出现下降。由此可见,消毒接触时间过短可能会造成消毒效果的降低,还会使出水总余氯的浓度大大升高,增加产生出水消毒副产物的风险(调研中发现个别厂,消毒药剂投加量低且消毒接触时间低,但出水粪大肠菌群数仍合格,是因为取样时氯药剂未反应完全,在采样瓶中仍在继续反应,所以存在采样的偶然性,不能代表实际消毒效果)。


图4消毒工艺接触时间分布


朱彩琴等[24]研究了次氯酸钠接触时间与消毒效果的影响,当接触时间为5 min时,有效氯投加量为3.51 mg/L时取得较好的消毒,粪大肠菌群数未检出;而当接触时间为30 min 时,达到较好的消毒效果只需1.76 mg/L的投加量。该研究讨论了采用A/A/O-SBR工艺中情况,不过,不同的处理工艺如MBR等次氯酸钠接触时间与消毒效果也不尽相同。由表1可以看出,一些按照规范控制有效氯投加量与接触时间的污水处理厂(如W10,W16,W49,W53等),其出水的总余氯和粪大肠菌群数均能够保持较低的数值,在确保充足的接触时间条件下这些厂的有效氯投加量并不高;而一些污水处理厂的有效氯投加量虽然偏高,但出水粪大肠菌群数却高于按照规范投加有效氯量的污水处理厂(如W12等),这可能是因为该厂的加氯消毒接触时间较短,仅为1 min,使得次氯酸钠与尾水还未充分接触就排出;另外,还有一些污水处理厂在相同的接触时间下,有效氯投加量虽然较低,但出水粪大肠菌群数依能保持较低的水平,如W13,W32等,通过调研分析发现这些污水处理厂在消毒工艺前段增加了如芬顿等高级氧化工艺,能够预先杀灭一些粪大肠菌群。我国《室外排水设计规范》(GB50014-2006)规定二氧化氯或氯消毒的接触时间不应小于30 min。由图5可知,结合文献中有效氯投加量与消毒接触时间之间存在的相关性:在一定的接触时间范围内,停留时间越长,所需加药量越低。


图5 粪大肠菌群数与接触时间和有效氯投加量的关系

因此,建议执行GB 18918-2002一级A标准的污水处理厂:①加氯消毒接触时间控制应≥30 min,条件受限的污水处理厂应尽量控制接触时间≥15 min(15min内消毒剂对粪大肠菌群的杀灭效率最快,时间延长后杀灭效率放缓),在冬季气温较低时可适时延长接触时间;②对于一些消毒前端采用了高级氧化或MBR等工艺的污水处理厂,可在充足接触时间的条件下根据实际情况适当的减少次氯酸钠的投加量;③对于无法改变接触时间或通过管道混合的污水处理厂,则需根据实际情况,通过试验来确定具体的投加量,同时关注出水端余氯。

2.5 加氯消毒后出水余氯的控制分析

城镇污水处理厂如采用加氯消毒,消毒后的出水中携带的余氯会一并排入自然水体,如排入自然水体余氯量过高,会对受纳水体中鱼类和水生生物造成毒性影响,因此有必要关注消毒后出水余氯数据。

加氯消毒出水若直接排入水体,会对鱼类或水生生物产生毒害作用,因此有必须对排入水体的尾水余氯量进行严格控制[25]。美国国家环保局规定尾水中总余氯应小于0.011 mg/L[26],而我国暂无相关标准。柏育材[27]等研究发现,当余氯浓度为0.2mg/L时,大黄鱼仔鱼的死亡率为20%左右;江志兵[28]等研究发现,0.1~0.2 mg/L的余氯浓度已接近甚至超过海水鱼类的30 min半致死浓度。由表1数据可知,调研的56座污水处理厂中有24座有出水余氯的测试数据,出水总余氯在0.09~8.5 mg/L之间,平均值为1.12 mg/L,总余氯浓度在0.20 mg/L以上的占比达到70%。因此,建议各污水处理厂:①优先确保出水粪大肠菌群数达标,在此基础上,尽量降低消毒药剂投加量,从而降低出水余氯浓度,减少对受纳水体生态环境的影响。②对于接触时间充足的,根据自身消毒接触时间进行投加次氯酸钠后水中总余氯量衰减的实验,确定在不同的接触时间下需控制尾水中总余氯量为多少能够保证出水粪大肠菌群数的达标;③对于接触消除时间较短或采用管道加氯消毒的污水处理厂,则需要进行短时间按内或管道模型实验管道中余氯含量的衰减情况,确定最佳的余氯含量。3结论

1) 紫外消毒具有持久性差的缺点,结合已有设施的紫外线剂量范围,应进行不同时间、不同水量条件下的粪大肠菌群光复活率实验,确保实现出水的稳定达标排放;如无法满足实际需求,应考虑设置其他消毒方式作为补充;目前使用二氧化氯消毒的城镇污水处理厂,建议对比设备厂家给出的有效氯数据和实际在污水消毒中可发挥作用的有效氯数据的差别(设备效率、检测时不同pH的影响等),加强二氧化氯发生设备的维护保养,并确保有可正常运行的备件,在确保出水粪大肠菌群数达标的情况下,尽量降低药剂的投加量,减少余氯对于受纳水体的影响;新建及扩建的城镇污水处理厂,在深度处理末端已设置了芬顿、臭氧等高级氧化工艺,且出水粪大肠菌群数稳定达标的情况下,可不另外单独设置消毒处理单元;消毒前端采用膜处理工艺的污水处理厂,因膜对病原微生物具有截留作用,可根据实验结果相应减少消毒药剂投加量。

2)调研结果表明,加氯消毒(次氯酸钠和二氧化氯)应用最为广泛,当前我国部分城镇污水处理厂无接触消毒池,消毒剂与污水的接触时间较短,无法充分发挥消毒作用,是导致药剂投加量偏高的原因之一。研究结果表明,对出水执行GB 18918-2002一级A排放标准的污水处理厂,当消毒接触时间≥30 min时,有效氯投加量控制在2~4 mg/L,粪大肠菌群数可达到排放标准要求;当消毒接触时间<30 min时,有效氯投加量需适当增大。由于受进水水质、水量、粪大肠菌群数、接触时间和水温等因素影响,消毒药剂投加量会有所差异,各厂应关注药剂投加量,定期检测粪大肠菌群数等指标,掌握药剂投加量与相关因素的关系,及时调整加药量。3)建议执行GB 18918-2002一级A标准的污水处理厂,加氯消毒接触时间控制应≥30 min,条件受限的污水处理厂应尽量控制接触时间≥15 min(15min内消毒剂对粪大肠菌群的杀灭效率最快,时间延长后杀灭效率放缓),在冬季气温较低时可适时延长接触时间;对于一些消毒前端采用了高级氧化或MBR等工艺的污水处理厂,可在充足接触时间的条件下根据实际情况适当的减少次氯酸钠的投加量;对于无法改变接触时间或通过管道混合的污水处理厂,则需根据实际情况,通过试验来确定具体的投加量,同时关注出水端余氯。4)城镇污水处理厂如采用加氯消毒,消毒后的出水中携带的余氯会一并排入自然水体,如排入自然水体余氯量过高,会对受纳水体中鱼类和水生生物造成毒性影响。建议我国城镇污水处理厂优先确保出水粪大肠菌群数达标,在此基础上,再尽量减少消毒药剂投加量,从而降低出水余氯浓度,避免对受纳水体生态环境的影响。5)城镇污水处理厂应加强游离氯、总余氯及粪大肠菌群数等指标的现场检测。针对游离氯和总余氯的检测,如现场未安装在线余氯监测仪,可采用便携式余氯仪快速测定余氯指标指导生产运行。针对粪大肠菌群数指标的检测,如现场检测到水样中含有余氯时,应及时加入适量硫代硫酸钠试剂脱氯以消除对粪大肠菌群数指标检测中的干扰,确保粪大肠菌群指标检测的准确可靠。6)另因氧化还原电位(ORP)可反映水溶液中所有物质表现出来的宏观氧化还原性,氧化还原电位越高,氧化性越强,故可根据ORP数值判断消毒出水氧化性,从而间接预估消毒情况。根据常州排水管理处多年运行经验和无锡市政公用环境检测研究院出水执行GB 18918-2002一级A排放标准的污水处理厂加氯消毒后出水口ORP数值大于600 mV时,出水粪大肠菌群数能够小于1000 MPN/L。因此,可考虑在加氯消毒后出水口检测ORP数值,辅助判断消毒效果。

4展望

结合已有的研究结果和目前城镇污水处理厂实际面临的问题,在以下几个方面尚需深入的研究:

1) 城镇污水处理厂MBR工艺与常规工艺对于消毒药剂投加量的影响;

2) 进水粪大肠菌群数、pH、氨氮、还原性干扰物等因素对于不同消毒工艺运行效果的影响,重点研究我国城镇污水处理厂加氯消毒适宜的CT值,即加出水余氯和消毒接触时间与粪大肠菌群数的相关关系;

3) 城镇污水处理厂进水余氯衰减规律及对活性污泥的影响机理,为城镇污水处理厂应对含消毒剂来水时的运行调控提供技术指导;

4) 城镇污水处理厂出水不同余氯及消毒副产物浓度对于受纳水体生态环境的影响。


原标题:新冠肺炎疫情期间城镇污水处理厂消毒设施运行调研与优化策略
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

城镇污水处理厂查看更多>消毒设施查看更多>污水处理厂查看更多>