北极星

搜索历史清空

  • 水处理
您的位置:环保垃圾发电报道正文

生物质预处理制成型燃料研究进展

2020-02-27 08:27来源:洁净煤技术作者:曹忠耀 张守玉 黄小河 宋晓冰 吴渊默关键词:生物质能生物质资源生物质成型处理收藏点赞

投稿

我要投稿

3.2低温热解预处理

低温热解预处理是在常压、隔绝氧气或缺氧情况下,将生物质原料置于反应温度为200~300℃时发生大分子热降解反应的过程[40-41]。低温热解预处理过程主要发生分子键断裂、脱羰作用、脱羧反应、脱水反应、脱甲氧基化反应、凝结及芳构化反应[42]。低温热解预处理过程能破坏生物质的纤维结构,使生物质变得易磨,有效改善粉体的流动性以实现稳定连续的输送,并有效去除生物质中的过量氧元素[43],且生物质经低温热解预处理后可保留70%~80%的质量和80%~90%的能量,因此其能量密度可提高30%[44]。

不同种类生物质由于其化学组分不同,其热稳定性及热解产物的特性也不同。Phanphanich等[45]对稻壳、木屑、花生壳、甘蔗渣和水葫芦进行了低温热解预处理试验,结果表明,几种生物炭的能量密度呈不同的增加规律,其中最大增幅是热解甘蔗渣,其能量密度为未处理原料的1.66倍,最小增幅是热解木屑,为未处理原料的1.08倍。

低温热解温度和停留时间对生物质低温热解特性有一定影响,特别是热解温度影响显著。王贵军等[46]在热解温度为200、250和300℃条件下,采用固定床试验台分别研究了棉花秆的低温热解特性,结果表明,随着热解温度的升高,固体产物的质量产率减小,能量密度增加,且制得的成型生物质的密度显著提高,其研磨特性和疏水性较生物质原料明显改善。

吴逸民等[47]研究了生物质中主要组分(半纤维素、纤维素和木质素)的低温热解特性,结果表明,半纤维素的主要热解温度在210~320℃,而纤维素和木质素的主要热解温度分别在310~390℃和200~550℃。Medic等[48]研究了玉米秆和甘草在250℃,停留时间为10、20和30min的条件下低温热解预处理后的特性,结果表明,随着停留时间的延长,热解生物质的能量密度增加了2%~19%,而质量和能量产率分别降低了3%~45%和1%~35%。Shang等[49]发现,赤松在经过230~270℃低温热解预处理后,热值由18.37MJ/kg升高至24.34MJ/kg,但赤松成型燃料的机械强度迅速降低。

Wu等[50]将棉杆和木屑在200~260℃下进行低温热解预处理试验,发现预处理后成型生物质的表观密度和抗压强度比原料成型生物质分别降低了3.9%~16.7%和23.2%~61.0%。可见,随着热解温度的升高和停留时间的增加,热解生物质的能量密度不断增加,而成型生物质的机械强度降低。当低温热解预处理温度为260℃或以上时,生物质中的天然黏结剂———木质素的结构被破坏,颗粒之间的机械互锁是此时成型过程的主要黏结形式,颗粒间的黏结性能降低[51]。因此,为获得高机械强度的低温热解生物质成型燃料,需要添加黏结剂来改善其成型能力,而黏结剂的掺混会导致成型燃料耐水性变差、热值降低等的问题[52]。

3.3水热预处理

水热预处理也被称为湿式热解,是指在密闭反应器中,以生物质为原料,水为反应媒介,通过加压使水在高温条件下保持液态,利用此状态下水的特殊性质对结构稳定的生物质原料进行分解[53]。原料在水热预处理过程中经历3个阶段的变化:①前驱体水解成单体,体系pH值降低;②单体脱水,诱发聚合反应;③芳构化反应形成最终产物[54]。水热处理过程需将原料与水混合,因此,整个工艺对于原料水分无任何要求,也无需对原料进行干燥,对于含水率高的生物质可节省大量干燥所需能量,可用于处理高含水率的污泥[55]。同时,水热预处理过程简单,反应条件温和,无需过高的温度与压力,对设备要求不高。因此,水热预处理工艺应用范围广,操作难度低,便于推广应用。

燃烧特性对生物质燃料至关重要,水热处理后生物质燃料的燃烧特性得到大幅提升[51]。水热预处理前后生物质的燃烧特性见表2。由表2可知,其燃烧特性接近甚至高于褐煤,对保障燃烧过程的安全性、提高燃烧效率以及减少污染物排放等具有重要作用。Kambo等[56]将芒草分别进行低温热解及水热处理,结果发现原料固定碳为11.7%,经260℃低温热解后样品的固定碳增加至14.2%,而当水热处理温度为190℃时,所得生物质固定碳增加至15.7%,当水热温度升高至260℃时,固定碳增加至30.3%,热值增加至25.9MJ/kg。此外,水热预处理后生物质的灰分显著降低,能有效解决生物质燃料燃烧过程中的积灰结渣问题。Kambo等[57]在另一组试验中发现,芒草在经低温热解预处理后的无机金属含量无明显变化,而经水热预处理后,灰分中的无机金属含量被去除30%~70%。

202002261624_45883100.jpg

另外,水热预处理可明显提高生物质的成型性能,水热成型生物质的抗压强度及耐久度等均优于原料成型生物质。Reza等[58]发现,火炬松原料成型后耐久度为(97.5±0.5)%,质量密度为(1080.2±5.1)kg/m3,能量密度为(21.3±0.5)GJ/m3;而260℃水热预处理后的成型生物质耐久度为(99.8±0.1)%,质量密度为(1478±9.7)kg/m3,能量密度高达(39.2±0.2)GJ/m3。Liu等[59]将椰子纤维、稻谷皮、椰子壳及松木屑进行水热处理后,发现其成型生物质的抗压强度相对于原料成型生物质提高了2~5倍。

Wu等[50]将棉秆和木屑在200~260℃下进行水热预处理,发现与原料成型生物质相比,水热处理后成型生物质的热值、表观密度和抗压强度分别增加5.1%~59.0%、9.5%~27.3%和114.0%~241.3%,且将该成型生物质炭化后,水热成型炭的机械强度明显高于原料成型炭以及掺混黏结剂制成的商用烧烤炭。水热预处理对生物质燃料成型性能的影响主要有:①水热预处理后的生物质表面更加平整规则,提高了颗粒之间固态桥键的稳固性[60];②水热预处理能促使更多羟基、羧基、羰基等含氧极性官能团的产生,提高了分子间氢键及范德华力等静电吸引力[61];③在一定水热温度下,木质素由固态转变为玻璃态,从而在颗粒内部形成局部熔融和机械互锁,起到了促进成型、改善成型的效果[58];④水热预处理过程中,产生大量生物油等极性有机化合物并附着于颗粒表面,其在成型过程中起液态桥键的作用,加强了相邻颗粒之间的黏结[62]。

4生物质成型综合利用技术

在生物质成型燃料的生产过程中,废水废液的直接排放不仅造成资源浪费,而且污染环境。木醋液是木炭制作生产过程中的副产物,无毒无害,易降解,具有高效的抗氧化性和抗微生物活性,在发达国家中已被广泛应用于农业、林业、医疗保健及食品领域[63]。因此,基于多年对生物质资源高效转化与利用的研究,上海理工大学能源与动力工程学院碳基燃料洁净转化实验室利用水热预处理技术制备高强度生物质成型燃料及成型炭燃料,并获得过程副产物———木醋液,从而获得多产品、环境友好的生物质成型综合处理技术。

4.1两步热解制备成型炭燃料与木醋液

该技术是将传统的热解和成型工艺相结合,充分利用热解工艺产生的液体和气体,同时将固体半焦制备成型炭燃料。具体过程如图2所示。

202002261624_61262900.jpg

首先对生物质原料进行初步热解处理,可获得气、液、固三相产物,通过控制热解温度获得高品质木醋液[63-65];初步热解固体产物进一步热解制得半焦,半焦即可用作电极或碳质吸附剂的原料,又可通过压制成型制备成型炭燃料,该燃料既可作为锅炉燃料,又可用于烧烤炭[66-70]。该工艺路线中热解过程产生的热解气与焦油蒸汽可为热解过程提供能量来源。该技术优点是既可获得品质较高的木醋液,也可根据市场需求获得不同的碳质产品,工艺规模可根据生物质供应适当调节,提高了生物质的应用价值。

202002261624_93478700.jpg

4.2结合预处理技术制备高机械强度成型生物质

燃料、成型炭燃料及木醋液生物质综合利用工艺路线2如图3所示。由图3可知,为进一步提高生物质综合利用的质量,对生物质进行相应的预处理,获得优质的木醋液[71-72]和改性生物质;再对改性生物质进行成型处理,在不掺混任何黏结剂的条件下获得高机械强度、高热值成型生物质,该产品可作为生物质燃料用于锅炉燃烧利用;成型生物质进一步热解,制得高机械强度成型生物质炭燃料[50]。该工艺路线可获得3种产品:木醋液、成型生物质燃料和成型炭燃料,该工艺制备的成型炭燃料热值高,燃烧性能、抗压强度和表观密度均优于商用烧烤炭,灰分远低于商用烧烤炭及欧盟标准(EN-1860-2),固定碳高于欧盟标准[50],具有很强的市场竞争力。该技术既可制备高机械强度的成型生物质燃料和成型炭燃料,还能获得优质木醋液,工艺规模可根据生物质供应适当调节,过程无污染,提高了生物质的应用价值。

5结论

生物质细胞壁中的三大组分紧密交联在一起,形成了物理和化学抗降解屏障,因此,预处理技术是实现生物质成型燃料品质提升的必要手段。由于不同的预处理技术对生物质化学组分占比以及结构的影响不同,预处理后的生物质成型燃料所体现出的物理性质和燃烧特性各有特点。相比原料成型生物质,水热预处理技术使生物质成型燃料在燃烧热值、能量密度、耐久度及机械强度等方面得到全面提升,但水热预处理成本较高,且对环境有影响。未来生物质成型燃料预处理技术的研究方向应从平衡生物质燃料品质与预处理成本之间的关系、减少污染物排放、预处理过程流程配置差异性集成和精确工艺参数匹配等为基础,开发适用于规模化灵活生产的节能高效预处理技术。

投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

生物质能查看更多>生物质资源查看更多>生物质成型处理查看更多>