登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:生物质能具有CO2零排放、普遍易得、价格低廉等优势。生物质成型处理有利于其远距离运输与长时间储存。但是,生物质细胞壁高分子聚合物形成了物理和化学抗降解屏障,严重阻碍了生物质成型燃料品质的提高,因此,采用预处理技术是实现生物质能源高效利用的必要手段。目前,生物质预处理技术主要分为物理法、物理-化学法、化学法和生物法四大类。由于各种预处理技术对生物质化学组分占比以及结构的影响不同,预处理后的生物质成型燃料所体现出的物理性质和燃烧特性各有特点。本文介绍了生物质原料中的纤维素、半纤维素以及木质素等主要化学成分的结构特点及其对成型过程的影响,并从提升生物质成型燃料的物理性质和燃烧特性角度总结了蒸汽爆破预处理、低温热解预处理及水热预处理3种预处理技术的研究进展。总体而言,水热预处理技术使处理后生物质成型燃料在燃烧热值、能量密度、耐久度以及机械强度等各方面性能得以全面提升,但是水热预处理成本较高且对环境有影响。未来生物质成型燃料预处理技术的研究方向应从平衡生物质燃料品质与预处理成本之间的关系、减少污染物排放、预处理过程流程配置差异性集成和精确工艺参数匹配等方面为基础,开发适于规模化灵活生产的节能高效生物质预处理技术。上海理工大学碳基燃料洁净转化实验室利用水热预处理技术制备高机械强度生物质成型燃料及成型炭燃料,并获得过程副产物———木醋液,开发了多产品、环境友好的生物质综合利用技术。
0引言
生物质资源能量密度低,存在运输、储存困难以及能源利用率低等问题,严重制约了生物质资源的规模化应用[1-2]。生物质固化成型技术可将形状不规则、松散的生物质压缩为形状规则、高密度的成型燃料,使生物质从低品位能源上升为中上等品位能源[3-5]。生物质成型燃料热效率高、燃烧性能好,是替代煤炭的理想燃料,广泛用于农村家庭炊事、取暖用能[6]。随着燃烧设备的不断改进和完善,生物质成型燃料耦合燃煤发电、供热项目在解决能源危机和环境污染等方面发挥了重要作用,具有良好的发展前景[7-8]。据欧盟委员会预计,2020年生物质成型燃料的市场规模可达4000万~5000万t(比2012年增长300%),所生产的热量和电力总量占可再生能源供能的45%[9]。
然而,由于生物质细胞壁中的三大组分(纤维素、半纤维素和木质素)紧密交联在一起,从而形成了物理和化学抗降解屏障,导致生物质成型燃料的机械强度和能量密度偏低,严重阻碍了生物质成型燃料品质的进一步提升[10]。因此,采用合适的预处理技术至关重要。
目前,许多国内外学者研究了原料水分、粒径、压力及温度等成型参数对生物质成型燃料品质的影响,得到了生物质成型燃料的最佳工艺参数[11-15],但有关原料化学成分对生物质燃料成型过程的影响作用机制研究较少。本文旨在总结前人在生物质原料主要化学成分(纤维素、半纤维素以及木质素等)对成型过程的影响研究,结合国内外关于生物质成型燃料预处理技术的发展状况,从提升生物质成型燃料的物理性质和燃烧特性的角度探讨生物质燃料压缩成型的内在机理,为高品质生物质成型燃料的开发提供理论基础与技术指导。
1成型过程及黏结机制
生物质的主要形态是不同粒径的粒子,且粒子排列通常较疏松,粒子间空隙较大,导致生物质燃料的密度偏小,故常采用压缩成型技术提高生物质燃料的密度。生物质燃料的压缩成型过程,即在一定条件下生物质颗粒之间发生塑变而相互啮合,伴随生物质中有机物软化胶合的过程[16]。生物质燃料的压缩成型过程经历以下4个阶段[17]:
①松散阶段。此时压力较小,物料在压力作用下缓慢挤紧,颗粒间空气和水分被挤出,此阶段主要是缩小颗粒间隙的压缩过程,增加较小的压力即可获得较大的压缩变形[18]。
②过渡阶段。在压力作用下,大颗粒发生破裂,填补周围的空隙[19]。
③压实阶段。颗粒间空隙基本被克服,在垂直于主应力的方向上发生塑性形变,相邻颗粒靠啮合的方式接触,使颗粒结合更加牢固[20-21]。
④推移阶段。物料与压块同步向出料口移动,可近似认为物料相对压块静止,此阶段压力逐渐释放,为典型的压力松弛过程[22]。压缩过程取决于生物质原料的物理性质和化学性质,受原料化学成分、水分、粒径、成型压力及成型温度等多方面因素的影响[23-24]。
生物质原料的木质素和半纤维素含量较高,一方面,木质素和半纤维素在压缩过程中发挥较强的黏合剂功能,把相邻的生物质颗粒黏结在一起;另一方面,木质素在达到玻璃化温度时开始熔融形成胶体物质,在相邻生物质颗粒之间形成液桥,并在冷却时进一步形成固桥,加强了颗粒之间的黏结作用[25]。生物质颗粒内部黏合力的类型及相互作用的方式可分为以下5类[26]:①固体桥接或架桥;②自由移动液体的表面引力和毛细压力;③非自由移动的吸附力和黏合力;④固体颗粒之间的分子吸引力;⑤固体颗粒之间的填充或机械互锁。虽然生物质成型燃料的密度和强度受温度、水分、压力、添加剂等多因素影响,但实质上均可用上述一种或一种以上的黏合类型和黏合力来解释生物质燃料的成型机制。
2生物质化学成分对成型过程的影响作用
生物质之所以能在较低的温度下压缩成型,其独特的化学性质是重要因素。生物质的主要化学成分包括纤维素、半纤维素和木质素3种高分子化合物,构成了生物质的细胞壁和胞间层。常见生物质原料的化学成分见表1。由表1可知,生物质的主要化学成分占比因生物质种类而不同[27]。因此,生物质的化学成分及其在成型过程中的变化规律和作用机制是探明预处理工艺对生物质成型燃料的提质改性作用的基础。
2.1纤维素
纤维素是由D-葡萄糖以β(1→4)糖苷键组成的链状高分子化合物,分子式为(C6H10O5)n。纤维素的每个葡萄糖基环上有3个活泼羟基(—OH),可通过—OH之间或OH与O—、N———和S—基团之间联结成氢键,能量强于范德华力[28]。在细胞壁中,纤维素通过分子链形成排列有序的微纤丝束。在压缩过程中,由氢键连接成的纤丝在黏聚体中起到骨架作用,有利于提高成型燃料强度。此外,纤维素中存在大量的非结晶区和结晶区,并伴有氢键联结,因而其晶体结构非常牢固[25]。
2.2半纤维素
半纤维素和纤维素都属于碳水化合物,但与纤维素不同,半纤维素是由2种或2种以上的单糖组成的不均一的高聚糖。由于其化学结构的不均一性,天然半纤维素为非结晶态且分子量相对低的多位分枝性聚合物,其聚合度为80~100[29]。半纤维素为无定形结构,易水解,结构强度低于纤维素。半纤维素结构复杂,其通过氢键与纤维素连接,以共价键(主要是α-苯醚键)与木质素相连,以酯键、乙酰基及羟基与肉桂酸连接[30]。半纤维素以无定型状态渗透在纤维素“骨架”中,从而增强了细胞壁的刚性,被称为基体物质。半纤维素的主链和侧链上含有较多的羟基、羧基等亲水性基团,是生物质中吸湿性较强的成分,在压力和水解的共同作用下可转化为木质素,从而起到一定的黏合剂作用[25]。
2.3木质素
木质素是一种复杂的、非结晶的、三维空间网状结构的复杂无定型高聚物,由愈创木基(G)、紫丁香基(S)及对羟苯基(H)结构单元组成[28]。木质素是在细胞分化的最后阶段形成的,渗透于细胞壁的骨架物质中,使细胞壁变得坚硬,故称为结壳物质或硬固物质。在自然条件下,木质素与水及其他有机溶剂几乎不溶解,100℃开始软化,160℃开始熔融形成胶体物质[17]。生物质压缩过程中,在压力和水分的共同作用下,木质素的大分子易碎片化,进而发生缩合和降解,溶解性质发生显著变化,生成可溶性木质素和不溶性木质素。此外,酚羟基和醇羟基的存在,促使碱性木质素溶解,木质素磺酸盐溶于水可形成胶体溶液,起黏合剂作用,提高了成型燃料的结合强度和耐久性[25]。
3预处理技术
预处理前后生物质细胞壁结构示意如图1所示。由图1可知,生物质细胞壁中的三大组分(纤维素、半纤维素和木质素)紧密交联在一起,形成了物理和化学抗降解屏障,导致生物质成型燃料的机械强度和能量密度偏低,严重阻碍了生物质成型燃料品质的进一步提升[10]。因此,需要采取合适的预处理技术打破该屏障,调整生物质的结构及组分占比,提高生物质成型燃料的品质。生物质预处理技术分为物理法、物理-化学法、化学法和生物法四大类,如:机械研磨、酸处理、碱处理、微生物处理、微波处理、蒸汽爆破处理、低温热解处理及水热处理等[31]。本文主要介绍蒸汽爆破处理、低温热解处理以及水热处理3种预处理技术及其对生物质成型过程的影响。
3.1蒸汽爆破预处理
蒸汽爆破技术最早是由美国学者Mason在1928年发明并用于制浆,将废木材转变为建筑纸浆[32]。蒸汽爆破的主要原理是利用高温高压水蒸气对植物纤维原料进行处理,使其半纤维素降解,木质素软化,纤维之间的横向连接强度降低,并在短时间内瞬间释放高压蒸汽,原料孔隙中的水蒸气急剧膨胀,产生爆破效果,将原料撕裂为细小的纤维状,达到原料组分分离和结构变化的效果[33]。
蒸汽爆破预处理因其成本低、能耗少、无污染而备受研究学者关注。韩士群等[34]采用蒸汽爆破方法对芦苇进行处理,并以高密度聚乙烯(HDPE)为塑料基体添加合适的助剂,发现蒸汽爆破处理显著增加细纤维的含量,改善了纤维质量。同时,蒸汽爆破处理的芦苇/HDPE复合材料的拉伸强度和弯曲强度较未爆破处理的复合材料分别提高了22.3%和32.6%。岳磊等[35]分析了蒸汽爆破处理压力、稳压时间对芦苇纤维形态、润湿性、化学成分以及灰分和硅含量的影响,发现随着蒸汽爆破剧烈程度的增加,芦苇中的纤维素含量增加,灰分和硅含量显著降低,芦苇纤维与脲醛树脂胶合性能得到改善。
Lam等[36]对杉木树皮进行了蒸汽爆破处理,发现预处理后的树皮中纤维素分子链发生断裂,分子内氢键受到一定程度的破坏,纤维素链的可移动性增加,有利于纤维素向无序结构变化。因此,蒸汽爆破处理后成型燃料的强度比处理前高1.4~3.3倍,燃烧热值也显著提升。对于蒸汽爆破预处理过程对生物质燃料成型性能的影响,Zandersons等[37]认为,预处理后纤维素的结构发生改变,纤维尺寸变细、变小,同时,木质素活性增强,并渗入到纤维素之间形成新的连接,内部黏结力显著增强;Shaw等[38]发现,预处理后生物质中的木质素含量比原料增加33.2%~54.5%,呈更好的黏结效果;Angles等[39]研究了木质素的变化规律,发现随着预处理程度的加剧,木质素降解、重聚并迁移到纤维素表面,在压缩成型时软化形成固体桥接,提高了成型性能。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
中国节能电子商务平台发布中节能(北京)节能环保工程有限公司2×75t/h生物质能发电项目#2炉SCR系统设备招标公告,本项目两台锅炉均由无锡华光锅炉厂设计制造,现锅炉脱硝采用尿素溶液,炉膛内布置喷枪的方式进行SNCR脱硝。喷枪数量比较少,难以均布还原剂。目前只能满足NOx排放200mg/Nm3要求,无法实
11月8日,国家能源局召开乡村振兴工作领导小组2024年第三次会议,深入学习贯彻习近平总书记关于乡村振兴的重要讲话和指示批示精神,落实中央和国家机关定点帮扶工作推进会议精神,总结前三季度乡村振兴、定点帮扶和对口支援工作成效,部署抓好全年工作目标落实,提前谋划明年工作思路。会议指出,2024
2024年1月18日,工业和信息化部等七部门发布《关于推动未来产业创新发展的实施意见》,其中明确生物质能为未来能源的重要组成部分。2024年2月4日,工业和信息化部印发《工业领域碳达峰碳中和标准体系建设指南》,其中提到:在燃料替代方面,重点制定生物质燃料替代技术。2024年2月6日,国务院办公厅发
国家能源局近日发布关于十四届全国人大二次会议第2186号建议的答复摘要指出,下一步,我们将继续鼓励煤电机组通过掺烧生物质等降碳方式实现燃煤电厂低碳化发展。关于十四届全国人大二次会议第2186号建议的答复摘要您提出的《关于加大生物质在自备电厂中的掺烧比例,推动石化企业绿色低碳转型》收悉,现
9月25日,中国能建党委书记、董事长宋海良在南宁拜会广西壮族自治区党委书记、自治区人大常委会主任刘宁。双方就贯彻落实“四个革命、一个合作”能源安全新战略,深化全方位多领域战略合作,助力广西高质量发展和现代化建设进行交流。刘宁欢迎宋海良一行来桂出席第21届东博会、峰会,对中国能建近年来
对十四届全国人大二次会议第0055号建议的答复国能建电力〔2024〕79号您提出的关于推进北方地区冬季清洁供暖行业高质量发展的建议收悉,现答复如下:我们深入贯彻落实习近平总书记关于推进北方地区清洁取暖的重要指示批示精神,会同有关部门因地制宜、积极稳妥推进北方地区清洁取暖工作。截至2023年底,
本会议9月30日前报名转发本文到朋友圈会议费全免,每单位限2人。超出人员按正常收费标准缴费;(免费报名需经过会务组审核方可有效,分享朋友圈获取20个赞,免费人员不包含用餐,报名成功5个工作日内缴纳500元餐费,缴费成功视为报名成功,开会议费发票,9月30日后按正常收费标准收费)。11月7日,期待与
北极星电力网获悉,教育部发布《2024年度普通高等学校本科专业申报材料公示》。据统计,2024年度拟新增本科专业535个,涉及353所高校。其中,新增碳中和科学与工程、生物质能源科学与工程、氢能科学与工程、智慧能源工程、碳储科学与工程等20个碳中和等领域相关专业,涉及复旦大学、北京科技大学、北京
近日,由哈电集团国际公司承建的印尼达来甘2台150兆瓦生物质耦合电厂项目相继完成2号发电机穿转子作业和1号机组吹管两大里程碑节点,标志着2号机组已进入安装后期,1号机组进入并网发电前的最后冲刺阶段。印尼达来甘项目是哈电集团国际公司持续深耕印尼市场取得的又一项重大成果,是印尼政府宣布支持运
能源法草案10日提请全国人大常委会会议二次审议。草案二审稿进一步促进能源绿色低碳转型,增加规定风能、太阳能、生物质能、地热能、海洋能、氢能等可再生能源开发利用的内容。此次提请审议的草案二审稿中增加三条规定,一是明确“国家推进风能、太阳能开发利用,坚持集中式与分布式并举,加快风电和光
9月4日,陕西省公示申报中央补贴生物质发电项目(第二批)。本次公示项目共6个,总装机151.201兆瓦,非竞争配置项目5个,总装机148兆瓦;竞争配置项目1个,总装机3.201兆瓦。详情如下:陕西省申报中央补贴生物质发电项目(第二批)公示根据国家发展和改革委员会办公厅、财政部办公厅、国家能源局综合司
近日,深圳市朗坤环境集团股份有限公司发布公告,,拟将公司中文名称由“深圳市朗坤环境集团股份有限公司”变更为“深圳市朗坤科技股份有限公司”,英文名称由“ShenzhenLionsKingEnvironmentalGroupCompanyLimited”变更为“ShenzhenLionsKingHi-TechCo.,Ltd”。变更名称原因随着公司经营范围的扩大,
在安定镇循环经济园区一期垃圾焚烧发电项目运营一周年之际,全市首个生物质绿氢项目落地园区。安定镇与大兴区经信局协同配合、紧密联动,积极主动与企业对接,第一时间向企业准确传达政策信息,详细介绍优惠政策及注册流程,把问题放在心上,把解决问题落实在行动上,全力支持企业落地,专人对接企业协
北极星固废网获悉,新疆维吾尔族自治区沙湾市生物质废弃物资源化循环利用项目开工。该项目总投资4500万元,总建筑面积约1.89万平方米,项目内容涉及秸秆预处理线、液态肥生产线、固态肥生产线以及综合配套设施等。项目建成后,预计年产液态肥15万吨、固态肥6万吨,年销售额1964万元。
北极星固废网获悉,10月8日,朗坤环境发布关于签署《房山区生物质资源再生中心项目特许经营协议》的进展公告。公司下属全资子公司与北京市房山区城市管理委员会完成了该项目的特许经营协议签署,项目总投资为7.4亿元,建设期为2年,运营期为38年。根据协议,餐厨垃圾处理费单价为415.48元/吨,厨余垃圾
朗坤环境公布2024年半年度报告,报告期营业收入8.93亿元,同比增长12.82%;归属于上市公司股东的净利润1.2亿元,同比增长24.12%;归属于上市公司股东的扣除非经常性损益的净利润1.16亿元,同比增长25.90%。在生物质资源再生业务领域,公司主要通过BOT、BOO等特许经营方式为政府客户提供可对各类生物质
当前,我国燃煤机组掺烧生物质发电技术成熟度如何?国家发改委日前印发《煤电低碳化改造建设行动方案(2024—2027年)》,将对我国生物质产业带来哪些影响?国家发改委日前印发的《煤电低碳化改造建设行动方案(2024—2027年)》(以下简称《方案》)指出,利用农林废弃物、沙生植物、能源植物等生物质
近日,江苏省发展改革委印发《省发展改革委关于转下达污染治理专项2024年第一批中央预算内投资计划的通知》,我市泗洪高能环境生物质能有限公司泗洪县餐厨(厨余)垃圾资源化处置项目获批污染治理专项2024年第一批中央预算内投资2100万元资金支持。泗洪高能环境生物质能有限公司泗洪县餐厨(厨余)垃圾
朗坤环境公布,2024年6月18日,深圳市朗坤环境集团股份有限公司公司收到了招标代理机构国信国际工程咨询集团股份有限公司发来的《中标通知书》(国信中[2024](45)0013号)。中标项目为房山区生物质资源再生中心项目(项目编号:GXTC-A1-24450011)。中标金额:餐厨垃圾处理费:415.48元/吨;厨余处理费:43
北极星固废网获悉,近日,北京市房山区生物质资源再生中心项目特许经营中标候选人公示,深圳市朗坤环境集团股份有限公司预中标该项目。餐厨垃圾处理费415.48元/吨;厨余处理费436.32元/吨;粪便处理费260.17元/吨,项目总投资73597.2万元。本项目特许经营期为40年(其中,建设期2年,运营期38年)。据前
北极星固废网获悉,北京市房山区生物质资源再生中心项目特许经营招标,项目预算金额为74341.42万元,招标人为北京市房山区城市管理委员会,不接受联合体投标。项目设计处理总规模为750吨/天,其中,餐厨垃圾处理规模为200吨/天,厨余垃圾处理规模300吨/天,粪便处理规模为200吨/天,废弃油脂处理规模50
2024年5月9日,以“新征程、新利用、新价值”为主题,由中国产业发展促进会生物质能产业分会、中国农业大学、国际能源署生物质能中国组、中国能源研究会绿色低碳技术专业委员会共同主办的“第五届全球生物质能创新发展高峰论坛暨有机固废资源(能源)化利用科技装备展”在京盛大开幕。论坛嘉宾合影中国产
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!