登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
污水厂的管理者更趋向于使用除磷药剂来使出水的磷达到标准内。随着越来越多的污水厂认识到药剂成本在整个运行成本中的高比例,对生物除磷的能力的挖掘,也成为更多的污水厂管理者关注的地方。
污水厂的工艺管理人员常常会遇到一些磷去除的问题,比如在同样的加药情况下,出水总磷总在发生变化,或者加药量过大,出水总磷长期处于过低的情况,大量的消耗药剂成本,但是又不敢随意消减除磷药剂,唯恐一旦减药量,就会出现总磷波动甚至超标。这些问题其实都可以归结到一点,那就是污水厂的生物除磷在一直起着自己的作用,因此不论从总磷的更精准的控制,还是从厂内成本的消耗上,运行管理人员都需要对污水厂内的生物除磷进行更深入和全面的了解。
污水厂的生物除磷(EBPR)依赖于良好的活性污泥中的聚磷菌的厌氧释磷和好氧聚磷,运营管理人员了解聚磷菌的生物特性,并且为聚磷菌创造和维持正确的环境是有效发挥生物磷的关键。当然由于生物除磷的复杂关系,生物除磷的过程可能看起来像一个计算机技术中的“黑箱”,运营管理人员很难准确的描述出工厂内生物除磷的,污水处理是一个微观和宏观相结合的技术工作,微观的变化从宏观上是可以通过一些指标数字的观察到的。所以从宏观意义上,管理人员并不需要了解这么详细的数据,可以通过适当的数据来管理和控制生物除磷。
聚磷菌在厌氧区没有溶解氧和硝态氮存在的厌氧条件,会发生释放磷的过程,聚磷菌在厌氧条件下只能吸收简单的有机分子,即“挥发性有机酸”(VFA)。活性污泥中的兼性细菌通过微生物的发酵作用将进水中的溶解性BOD转化为挥发性有机酸(VFA),而聚磷菌吸收这些VFA并进入细胞内,同化合成为胞内碳源的储存物—聚-β-羟基丁酸盐(PHB),聚磷菌在完成这个过程中所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放,而在厌氧区的磷释放的越彻底,在好氧区域会吸收更多的磷,这就是理论上认为的生物除磷的过程。
从这个生物除磷的过程我们可以看到,生物除磷是有一定的要求的,首先是有足够的聚磷菌,没有聚磷菌的作用,生物除磷是不可能发生的。其次是需要进水中有一定量的溶解性的BOD能够被转化成为VFA(挥发性有机酸)。那么这个BOD的量需要多少才能净吸收足够的磷使出水达标呢?
这个我们就需要了解的自己污水厂中进水水质的BOD与磷之比(BOD:P),通过检测进水BOD和总磷来判断是否有足够的碳源来实现聚磷菌的磷的释放。这里要注意,虽然我们是要探究厌氧区的聚磷菌的生存环境,但是不能直接以检测厌氧区的BOD和P的比例为判断依据,是因为在生物池中进水和回流会均匀混合,使我们取到的混合液的BOD通常较低。如果简单的把生物池内的混合液进行检测,这样检测的数据是不能确定进入厌氧反应器的BOD:P值的。
在科学的理论研究表明,进水BOD和TP的比例小于20不太可能实现生物除磷的效果,但是这个比例大于40会有比较良好的生物除磷的效果。因此我们在实际运行中如果希望发挥更好的生物除磷的作用,可以衡量一下污水厂中实际进水的BOD和TP的比例关系,如果低于这个比例可以进行除磷碳源的补充,但是要注意,聚磷菌对碳源是需要简单的有机分子,因此在选择碳源时要注意选择快速降解的碳源。比如常用的乙酸钠就是比较容易降解的碳源,适合在生物除磷的碳源补充。特别是一些污水厂使用碳源进行生物脱氮的碳源补充,也可以在厌氧区域投加一定量的碳源,来加强生物脱氮的效果,这样可以通过生物除磷的效果的实现,减少化学除磷的药剂投加。
一般来说在污水厂的实验室内简单的BOD测试不能检测出聚磷菌所需的VFA数量的。只能通过检测易生物降解的生化需氧量来预测VFA的数量。所以通过检测可溶性的COD,也就是通过絮凝和过滤后的COD测试是衡量聚磷菌所需碳源数量的更准确的方式。通过长期的检测,我们可以根据化验室的数据关联来确定这两者之间的比例,但是要注意,这个比例可能会随季节的转化而发生变化。在污水收集管路中的厌氧条件和发酵作用下,一部分有机物通常会分解为较简单的分子,就会增加释磷过程中所需的VFA,实现更好的生物除磷。特别是在旱季期间居民用水量少,整个污水管网内流速缓慢,以及具有化粪池收集系统都有助于BOD转化成为VFA。但是在多雨的季节,污水管网内来自更多的雨水可能会导致厌氧发酵的性能下降,导致VFA的减少,也会对生物除磷的效果下降。这也是在一些污水厂内夏季的除磷效果不如冬季的原因。
同时也要注意,当包含硝酸盐的回流污泥进入厌氧区时,会产生缺氧条件,在这样的缺氧条件下,反硝化细菌就会快速生长,与聚磷菌在释磷作用中共同竞争易降解的BOD。因此在实际运行中,要每周测量回流污泥中的硝酸盐,根据检测出来的硝酸盐含量,调整生物过程,以保证回流污泥中的硝酸盐含量低于5 mg / L,如果大于10 mg / L的结果可能导致反硝化菌和聚磷菌的竞争,导致生物除磷的效果下降。
我们在收集到足够的运行数据的时候,生物除磷会成为可控的。运行人员对生物除磷的环境管理的内容可以从提升的污水的各项水质,包括进水总磷,进水BOD,对活性污泥的浓度和回流污泥浓度,回流流量,以及厌氧,缺氧和好氧的溶解氧浓度等等来进行。这些参数需要进行长时间的大量的数据积累,最终形成本厂内的生物除磷工艺的影响因子,但是也要记住,由于大多数市政污水厂中的活性污泥在系统内停留的时间都是比较长的,所以我们所作的任何工艺的调整,对工艺所产生的影响都需要一定的时间来验证。一般做出的生物调整,需要一到两周内应观察到出水磷浓度变化,所以是需要我们工艺管理人员做工艺的预先调整。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
随着经济和技术的发展,MBR工艺在污水处理厂的新建和提标改造中得到了一定范围的应用。传统MBR工艺常耦合活性污泥法、AO、AAO等,实际运行中存在TN、TP去除率受限的情况。根据研究,UCT工艺在实际应用中能最大程度地挖掘生物除磷的潜力,实现低磷排放[1]。同时,MBR可取代传统生物工艺中的二沉池,出水
这一周接着和大家来讨论生化池的工艺运行细节。生物除磷是污水厂经济合理的除磷方式,但是在实际运行中,污水厂更倾向于使用化学除磷的方式来组织日常的生产达标,这是因为化学除磷有着管理简单,见效快,不影响生物脱氮的长污泥龄的要求,因此在多数污水厂大量依靠化学除磷是比较多的一种方式。化学除
这一周接着和大家来讨论生化池的工艺运行细节。这周公众号将继续围绕生物除磷的厌氧区进行细节管理的讨论。作为生物除磷功能区域的生化池厌氧部分,同时还具备外回流的接纳区域,在传统的活性污泥工艺中,二沉池与生化池之间通过外回流泵将沉淀到二沉池底部的活性污泥循环进入到生化池内,形成一个活性
2016年4月,美国国家清洁水组织协会(NACWA)联合美国水环境联合会(WEF)和美国环保署(EPA)等多个组织,成立了名为“UtilityoftheFutureToday”的项目,鼓励各地水务局在水回用、水流域治理、污泥回用、能量回收以及原材料回收等方面开展相关项目。同年8月NACWA公布了该项目首批获认证的水务局名单。
目前可持续性正在成为人们关注的一个主要问题,以更加综合和创新方式解决水问题就显得十分重要。因此,研发更加可持续性工艺至关重要。在可持续过程中追求的是回收所有有用资源,例如,化学品、营养物质、能源和水本身。在这方面,污水可以被视为资源与能源的载体。回收养分和有机(COD)能量后,出水作为副产品可以用作再生水利用;这与传统工艺完全不同,它们一般不考虑资源与能源回收,而是仅将出水作为主产品(中水)加以利用。事实上,有机能源回收可以显著减少剩余污泥产量和CO2排放量,而回收磷酸盐则可以缓解对磷矿的消耗。
强化生物除磷(EBPR)工艺被广泛应用于污水脱氮除磷,其机理和相对于化学除磷工艺的优势在此不再赘述,我们传统认知均以Accumulibacter菌(A菌)作为主要的PAOs菌,生物除磷数学模拟技术也是以A菌的代谢作为PAOs代谢进行模拟。
随着炎夏的到来,污水厂处理的水温上升,多数污水厂在夏季期间,水温能达到20℃左右,这是微生物较为适宜的一个生存温度,各类水处理微生物都处于较强的活性状态下,微生物的良好状态的作用下,污水厂的整体运行处于一个较好的运行状态中,在冬季为之发愁的污泥老化、膨胀、泡沫都缓解了很多,但是随着夏季的到来,也会出现一些特别的情况,比如近期比较容易出现的磷的上升。
上一篇探讨了基于生物池的精细化的管理对仪表的需求变化,高标准的出水水质要求带来了对生物处理过程进行控制需求,人工监测无法满足生物处理的复杂而变化的工艺过程的参数监测,在线检测的仪表被用于过程控制来提升工艺管理水平成为污水厂新的管控思路,那么如何在生物池内的设置在线监控来提升过程管控能力呢?
磷的去除有化学除磷、生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮
这一篇将继续根据同一套图纸来讨论改良型A2O工艺的多点进水的分布意义以及运维管理中如何应用。对出水总磷总氮的在线监控的要求,使污水厂设计更注重了生物除磷脱氮的设计,在生活污水厂中,高氮磷进水难以稳定达标的主要原因是进水碳源不能满足生物除磷脱氮的需求,因此合理的、最大程度的利用进水中
北极星水处理网获悉,太原北郊污水处理厂一期改造主体工程已于近日完工,具备通水条件,正在进行最后的道路和园林绿化等收尾工程。工程完工后,该厂的污水处理能力将提升一倍,由原先的每日4万吨提升至每日8万吨。北郊污水处理厂是华北地区第一座污水处理厂,建于1959年,服务范围包括上兰村至赵庄、滨
生物脱氮除磷(BiologicalNutrientRemoval,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。一、A2/O工艺1、厌氧池图1为传统的A2/O工艺流程,首段为厌氧池,本池的主要作用为释
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
编者按:污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化
【社区案例】马上入冬了,昨天水温连续下降了接近10度,现在氨氮持续升高中,北方的朋友们介绍介绍经验。生物脱氮对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污
在上个月的《水星漫谈》里,小编介绍了一篇WEFTEC的杂志《WaterEnvironmentTechnology(WET)》的文章,讲的是低C/N的生物脱氮除磷案例。除了案例之外,文中的图片也吸引到小编的注意。小编发现,文中污水厂的照片来自一个PaulCockrellPhotography的工作室。在此之前,小编已经在其他地方看到过此人名字
AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,硝化菌进行硝化反应,氨氮转化为硝化氮并回流到缺氧段,反硝化细菌在缺氧池利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成游离态氮,同时获得同时去碳和脱氮的效果。一、生物脱氮的基本原理传统的生
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
微生物的世界里面生活着一种细菌,天生娇贵,禁不起雨,经不起浪。它就是污师们又爱又恨的硝化细菌。生物脱氮的骁将,微生物界的贵族!像这样优秀的菌,为何这么难培养?看完下面这些控制条件你就知道了!一、硝化系统的培养硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
上周工艺细节管理对生物池的硝化反应进行了全面的细节讨论,这周开始对脱氮的第二步反硝化反应的工艺细节管理进行探讨,欢迎大家持续关注并参与讨论。在传统的生物脱氮理论中,氮的去除需要经过氨氮在有氧条件下被硝化菌硝化为亚硝酸根和硝酸根,而后在缺氧环境中被反硝化菌利用有机物转换为氮气释放到
3月4日,云南砚山县城北片区污水处理基础设施建设项目(一期)EPC招标公告发布。标段合同估算价:16560.2万元。本次招标内容:(1)污水处理厂工程:项目污水处理厂规划总用地约23770.14㎡(35.66亩),建构筑物总建筑面积7116.48㎡,其中:构筑物建筑面积4555.88㎡,建筑物建筑面积2560.60㎡,并配套
3月3日,福州新区尾水管、污水主干管及配套设施工程建设运营一体化项目中标结果公示。中交第二航务工程局有限公司、福建鑫星集团有限公司联合体中标,中标金额:工程总承包部分709538833元;运营部分固定运营收益费按65000000元报价,运营收益分成费按本项目子项目三建筑安装工程费中标价的10%报价。福
3月3日,广东阳春市城区污水处理厂配套管网建设工程中标结果公告。广东中博建设工程有限公司中标,中标总价:458008625.4元。该项目分为河东污水片区和河西污水片区,合计范围27.88平方公里,新建d300至d1500污水管109.02千米,修复管道缺陷234处。最高投标限价:45943.286895万元。详情如下:
3月3日,江西赣州经济技术开发区北城区及综合保税区生活污水管网建设项目工程总承包招标公告发布。详情如下:
3月3日,江西赣州经济技术开发区欧潭片区及空港新区生活污水管网改扩建项目(EPC)招标公告发布。详情如下:
2月27日,福建泉州市中心市区(城东、东海、北峰污水厂片区)污水提质增效工程——城东片区(二期)中标候选人公示。评标委员会推荐的中标候选人:中标候选人一:宁波市政工程建设集团股份有限公司,投标报价:17095.0212万元;中标候选人二:福建省中霖工程建设有限公司,投标报价:17127.1895万元;
2月27日,邯郸市北污水处理厂工程项目EPCO(设计、采购、施工、运营)总承包中标结果公示。中交一公局集团有限公司中标,中标价格:705734200元。该项目新建污水处理厂1座,本次建设规模:10万m3/d,配套污水管网总长17640m,重力流管道管径为D1000~D2000;尾水管道2000m,管径为DN2000;新建黄粱梦污
2月25日,江苏无锡惠山区农村生活污水治理项目农污项目中标人公示。拟确定中标人为:江苏环保产业股份有限公司、江苏启德水务有限公司、南京市市政设计研究院有限责任公司、江苏省环境工程技术有限公司。中标候选人第1名:江苏环保产业股份有限公司、江苏启德水务有限公司、南京市市政设计研究院有限责
日前,江西]九江经开区石化产业园污水处理厂及其配套管网建设项目(施工+运营)招标公告发布。详情如下:[九江经济技术开发区]九江经开区石化产业园污水处理厂及其配套管网建设项目(施工+运营)
日前,山东菏泽市第四污水处理厂及配套污水管网工程(特许经营)招标公告发布。本项目总投资约35541.64万元,招标控制价2.70元/m3。菏泽市第四污水处理厂及配套污水管网工程(特许经营)招标公告一、项目概况与招标范围:1、项目编号:12371700MB2823983A001307;2、项目名称:菏泽市第四污水处理厂及
日前,广东五华县农村生活污水治理攻坚项目(一期)勘察、设计施工总承包中标结果公示。中国二十二冶集团有限公司、广东南悦建筑工程有限公司、梅州市城市规划设计院有限公司、山东岩土勘测设计研究院有限公司联合体中标。投标总报价:354111284.52元。本项目主要建设内容为:新建255个自然村建农村污
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!