登录注册
请使用微信扫一扫
关注公众号完成登录
03 细胞表面疏水性假说
根据热力学理论,细胞表面疏水性上升会减少细胞表面多余的吉布斯能,进而增加细胞间的相互作用形成致密的稳定结构。
有研究表明,在3周的好氧颗粒污泥形成过程中,污泥的疏水性由接种污泥的39%上升到73%,由此证明细胞表面疏水性是细胞自身聚集和附着的重要亲合力,对于好氧颗粒污泥的形成起到关键作用。疏水性对于细胞间的相互作用具有重要意义,这可能引起微生物的初始自身稳定,并进一步将细菌紧密地结合在一起。
04 选择压驱动假说
有研究表明,通过控制沉降时间进而控制选择压是序批式反应器(SBR)中好氧颗粒污泥形成的决定性因素。缩短沉降时间有助于洗出沉降性能差的絮体污泥,造成相对较强的选择压,促进好氧颗粒污泥的形成。
在一定范围内,提高选择压会导致好氧颗粒污泥的粒径变大。缩短沉降时间可显著提高细胞多糖的产量、细胞表面疏水性及微生物活性,进而利于好氧颗粒污泥的形成。对选择压的控制和深入研究有助于更好地了解好氧颗粒污泥的形成机制。
X. H. Wang等通过逐步增加进水氨氮浓度来提高选择压,培养出具有良好稳定性的好氧颗粒污泥,提供了一种新的好氧颗粒污泥培养策略;今后应通过逐步改变选择压的方式开发好氧颗粒污泥生物反应器,使其具有更高的性能和效率。通过改变选择压的方式促进颗粒污泥的形成,这一方法在连续流反应器中同样有效。
05 胞外聚合物假说
胞外聚合物(EPS)是在一定的适宜条件下由微生物分泌于细胞表面的大分子有机物质。自诱导体(autoinducer,AI)(信号分子)形成后释放,可以在群体感应(Quorum sensing,QS)中被细菌探测到。QS是细菌在不断变化的环境中生存和适应的一种现象,通过QS,细菌可以对种群密度进行监测,同时激活细菌生长的基因表达。
根据Y. Q. Liu等提出的假设,微生物细胞与其他微粒连接,形成颗粒化污泥的前身。EPS在好氧颗粒污泥的发育过程中起着重要作用。有研究表明,好氧颗粒污泥与普通絮状活性污泥的EPS成分,如蛋白质和多糖的浓度和分布是不同的,从好氧颗粒污泥中提取EPS,其中检测出带负电荷的多糖和蛋白质,但未在活性污泥中检测出。好氧颗粒污泥的EPS有机组分可以改变细菌的表面特性和颗粒污泥的物理特性,有利于细胞之间的聚集及稳定。
研究表明,在好氧颗粒污泥周围松散附着的EPS是造粒过程的重要因素,主要由其中的蛋白质所决定。
EPS的形成取决于反应器内的运行方式及环境,控制好相关参数有利于EPS的适量产生,从而形成稳定的好氧颗粒污泥。根据结合程度的不同,EPS可分为溶解性EPS(soluble EPS,SEPS)和附着性EPS(bond EPS,BEPS),BEPS又分为松散附着性EPS(loosely bond EPS,LEPS)和紧密附着性EPS(tightly bond EPS,TEPS)。
06 阶段形成假说
阶段形成假说将好氧颗粒污泥的形成分为4个阶段,每一阶段由不同的作用力或物质发挥影响,促进接种污泥逐步形成颗粒污泥。
第一阶段,由接种污泥表面细菌之间发生的物理运动来促进颗粒化,如水动力、扩散力等;
第二阶段,由物理、化学及生物方面的各种吸引力来维持固体细胞表面和多个细胞之间的稳定连接,如范德华力、化学键及细胞膜融合等;
第三阶段,微生物促使聚集的细菌成熟,EPS的产生、菌群的增长等过程均在此阶段;
第四阶段,通过水力剪切力形成稳定的三维结构。该形成机理是目前比较全面的一种颗粒污泥形成理论,但因各种因素间的相互影响,仍难以完整涵盖好氧颗粒污泥整个形成过程。
2 好氧颗粒污泥形成的影响因素
好氧颗粒污泥能否形成及其形成周期长短、污泥质量如何、能否维持稳定,受其培养运行过程中多种因素的影响。通过对其深入研究,可以全面了解好氧颗粒污泥的形成及稳定适应条件,并据此对可变因素进行控制,对培养好氧颗粒污泥具有重要的意义。
01 碳源
碳源不同会导致培养出的好氧颗粒污泥存在差别。在其他条件相同的前提下,J. H. Tay等以葡萄糖为碳源培养出的颗粒污泥以丝状菌为主,以乙酸为碳源培养出的颗粒污泥却以杆状细菌为主。
同时,单一碳源和混合碳源也对形成好氧颗粒污泥的结构及稳定性有所影响。高景峰等以蔗糖为唯一碳源培养好氧颗粒污泥,发现23 d后出现丝状菌膨胀现象。之后改用蔗糖加等量蛋白胨的组合碳源,丝状菌膨胀现象得到了有效的解决。
这说明,在培养好氧颗粒污泥的过程中采用单一碳源易引起丝状菌膨胀,混合碳源可以有效抑制该现象,对维持好氧颗粒污泥的稳定起到重要作用。碳源种类虽然可以改变颗粒结构,但有人认为其对好氧颗粒污泥的形成不能起到决定性作用。
02 种泥
Z. Song等研究发现从啤酒废水处理厂中取的污泥比城市污水处理厂中提取的污泥更适合培养好氧颗粒污泥,表明接种污泥对好氧颗粒污泥的形成有重要的影响。不同种泥的颗粒化乃至稳定所需时间不同,所培养出的颗粒污泥菌群结构也不相同,说明微生物种群变化同接种污泥有关。
微生物的活性对好氧颗粒污泥的影响不明显,但受接种污泥疏水性的影响较大。有研究者在培养好氧颗粒污泥的过程中加入厌氧颗粒污泥,缩短了好氧颗粒污泥的形成时间,且污泥稳定、污水处理效果好。这为好氧颗粒污泥的培养提供了一个很好的选择。
03 水力剪切力
一般来说,由上流曝气引起的水动力湍流是系统的主要剪切力,反应器可以通过改变表面上升气体流速来控制水力剪切力。当对颗粒污泥施加剪切力时,颗粒必须通过消耗非生长能量,改变细胞表面EPS的量来调节其代谢途径,以维持与外部剪切力的平衡。
研究表明,当表面上升气体流速达到1.2cm/s时可以形成密度大且表面光滑的颗粒污泥。水力剪切力越大,越容易形成稳定的颗粒结构、清晰的污泥轮廓及良好污染物降解性能。
为了在保证污水处理效果的情况下降低能源使用,沈忱等研究了低曝气条件下反应器的运行及好氧颗粒污泥情况,结果发现,在能够使污泥达到颗粒化的水力剪切力下,好氧颗粒污泥对污水的处理性能稳定,可以高效地进行脱氮除磷以及去除COD。
04 PN/PS
一般认为,多糖(polysacides,PS)可以调节细胞的内聚力和黏附力,在污泥颗粒化过程中对维持污泥结构的完整性起着至关重要的作用。有研究发现,随着水力剪切力的增加,污泥中多糖含量与蛋白(proteins,PN)含量的比值也有显著上升。
值得指出的是,颗粒污泥中多糖的含量至少比絮凝体中高出2倍,同时也观察到多糖的含量比絮凝体和颗粒污泥中蛋白质含量高得多。这可能意味着胞外蛋白对微生物群落结构和稳定性的影响不如多糖大。
05 pH
张志等运行6个相同的反应器,仅控制pH不同。结果表明,当pH在8.4时,细胞产生最少量的EPS,当pH上升到9.0时,EPS少量上升。
EPS上升有助于保护颗粒污泥,减少被酸碱值过高所带来的伤害。研究结果证明控制pH使EPS产量增加,有利于提高污泥的耐冲击能力,使颗粒污泥更加稳定。
06 温度
温度可以显著影响生物过程中的微生物代谢和群落结构。A. Gonzalez-Martinez等在低温下研究北极圈好氧颗粒污泥的性状及菌群,发现温度的改变会导致颗粒污泥菌群变化,是维持污泥结构正常或导致解体的重要因素。
此外,有研究表明,与温适应接种物相比,冷适应接种物显示出优异的颗粒状生物质形成能力。在低温条件下培养的好氧颗粒污泥,低温启动时,3周内就可以有效去除有机物,这表明低温环境下好氧颗粒污泥更容易培养。
07 细胞表面电荷
一般来说,微生物细胞表面带有负电荷。相似电荷之间的排斥可防止细胞在没有另一种机制的帮助下彼此附着。二价阳离子如Ca2+中和微生物表面电荷已被认为是促进初始细胞附着的可能机制。范德华力也可能有助于这种细胞吸引力。DLVO理论同样适用于分析细胞表面负荷对污泥产生的相互作用。
08 反应器类型及运行方式
好氧颗粒污泥多在SBR中进行培养。在反应器运行期间,由于高表面负电荷所引起的静电斥力、疏水性低所形成的水包围面以及EPS之间的相互作用,细胞表面存在的过多EPS会使得初始的黏附过程困难,EPS与细胞表面负电荷呈正相关性,与疏水性呈负相关。
SBR反应器的曝气过程导致了长时间的饥饿期,EPS消耗至合理数量导致具有低负电荷和高表面疏水性的污泥形成,继而颗粒继续增长达到稳定颗粒化。
研究表明,为保证颗粒污泥的稳定性和良好的出水质量,饱食周期的长度不应超过总周期长度的25%。同时,在柱状上升流反应器中,反应器高度与直径(H/D)的比例较高,可以保证较好的颗粒流动轨迹,从而为微生物聚集提供良好条件。
此外,好氧颗粒污泥也可在其他反应器中形成。列举了文献中几种成功培养出好氧颗粒污泥的反应器类型,见表2。
3 好氧颗粒污泥的应用
好氧颗粒污泥具有同时脱氮除磷、去除有机污染物、去除重金属等作用,且去除效果良好。在城市污水和工业废水处理中已经有相关应用。
01 脱氮
由于颗粒污泥的结构特征,溶解氧在污泥的不同部位存在差别。因为颗粒污泥外部生存的活性细胞层消耗了大部分氧,所以颗粒污泥核心处没有氧。污水中脱氮所需要的好氧条件和缺氧条件都能够在颗粒污泥内实现。因此,好氧颗粒污泥能够实现良好的生物脱氮效果,从而用于实际的污水脱氮。
好氧颗粒污泥在处理主流工艺污水以及合成废水时均显示出良好的脱氮性能。Y. Liang等采用机械混合和曝气技术将全程自养脱氮工艺(CANON)颗粒污泥培养40 d,运行期间处理合成污水、主流污水的平均氮去除速率(NRR)分别为3.22、1.11kgN/(m3·d)。出水硝酸盐浓度低,未发现硝酸盐积聚。
此外,也可通过控制其他因素达到良好的脱氮效果。影响颗粒污泥同步硝化反硝化的因素包括污水中的溶解氧、污泥的颗粒大小、电子供体可用性以及微生物活性等,例如,微碱性条件有利于亚硝化的进行。
低氧浓度条件下氮的去除效率更高,但无法维持好氧颗粒污泥的结构稳定。不同培养条件下产生的硝化细菌也会导致不同的脱氮效果。好氧颗粒污泥的结构及大体脱氮过程见图1。
02 除磷
污泥中的聚磷菌在好氧条件下过量地摄取磷,在厌氧条件下释放磷。好氧颗粒污泥表面溶解氧含量大,颗粒内部可以达到缺氧甚至厌氧状态。基于这一原理,好氧颗粒污泥可以实现污水除磷的功能。
温度、pH、盐分、有机负荷、废水底物类型和曝气都对好氧颗粒污泥除磷效果具有影响。
O. Henriet等通过差异选择含有高比例聚磷菌的颗粒来改进SBR中好氧颗粒污泥的除磷性能。
结果表明,沉降时间的增加与污泥床的均匀净化相结合,规模和密度分布更为广泛,这导致改进后的磷去除率超过90%,同时保持良好的氮和COD去除。通过对工艺的不断改进和完善,好氧颗粒污泥可以取得良好的除磷效果。
03 有毒物质及难降解物质的去除
好氧颗粒污泥具有致密的核结构,对外部粒子具有较高的防扩散性,因此细胞整体对有毒物质具有很高的耐受能力。A. F. Duque等研究表明,好氧颗粒污泥可有效去除合成废水中有毒的2-氯苯酚。
也有研究表明好氧颗粒污泥可以去除2,4-二硝基甲苯。此外,磷酸三丁酯的水解产物正丁醇可以被好氧颗粒污泥快速生物降解。石油化合物的去除效果可高达90%。好氧颗粒污泥具有优异的生物营养物质去除能力以及有毒或顽固污染物的生物降解性能。
好氧颗粒污泥相关工艺是常规活性污泥工艺的替代工艺,用于去除营养物、持久性污染物和水回用。未来应致力于进一步研究好氧颗粒污泥的形成机制,改善低强度污水中的好氧颗粒污泥形成。
现阶段,有关好氧颗粒污泥的研究大多仍在模拟废水的反应器中进行,今后应着力于在实际污水和工业废水处理中运用研究。
同时,关注运行条件对好氧颗粒污泥稳定性的影响,防止如溶液中含盐量不当导致颗粒污泥失稳解体等问题的出现;另外,也要着重研究如何加速好氧颗粒污泥的培养、强化同步高效脱氮除磷措施等。
4 结论
(1)表面光滑、粒径大、性能良好的好氧颗粒污泥能够实现较好的污水处理效果,可以同时高效脱氮和除磷,并保持良好的有机物去除效果,还可以去除有毒有害物质;好氧颗粒污泥在不同种类废水处理过程中的效能、去除微污染物的机理方面需要进一步研究。
(2)好氧颗粒污泥的形成是在多种机制共同影响下的结果,目前还缺乏能够准确完整描述其形成的假说,对其形成机理还需要进一步研究,特别是其形成过程中胞外聚合物的功能及调控措施。
(3)好氧颗粒污泥的培养过程中,污泥颗粒化以及颗粒污泥的各种特性受多因素的影响,任一因素的改变都可能导致颗粒污泥的解体、粒径大小的改变;今后应着重对于好氧颗粒污泥内各微生物之间的协作和生态位及其影响因素进行研究。
(4)对于好氧颗粒污泥的培养研究大多仍处于实验规模,未来应逐渐向实际污水发展;好氧颗粒污泥在实际应用中的稳定性仍然是一个挑战,今后需要对好氧颗粒污泥系统的稳定维持、节能和回收资源方面的影响因素及控制策略进行研究;另外,如何加速好氧颗粒污泥形成仍将是一个研究热点。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
作为省国资委A类拓新企业、粤海水务下属科研创新核心平台公司,粤海科技公司依托粤海水务产业优势资源,深耕水务新工艺、新材料及低碳节能技术开发应用、智慧水务、环境监测、水务增值业务等领域,积极打造原创技术策源地、培育发展新质生产力、塑造发展新动能。2024年,粤海科技公司涌现一批科技创新
5月16日至17日,2024给水大会暨第二届粤港澳大湾区水安全联合创新中心论坛在广州南沙隆重举行。此次高规格水业盛会云集全国千名权威专家、名校学者和名企代表,聚焦前沿科技创新,深入探讨城市群给水安全保障和水资源可持续利用,有效促进了全国水务行业资源的深度交流融合,对于凝聚创新发展新质生产
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
我国污水处理已经走过了百年历史,当前,污水处理行业一方面需要应对持续增长的污水处理量和高品质出水要求,另一方面“双碳”目标也对污水处理提出了新要求。在此背景下,新一代革命型污水处理技术——好氧颗粒污泥技术成为行业热点。与传统活性污泥絮体相比,好氧颗粒污泥形状规则,结构紧凑致密,沉
Kluyver生物技术实验室是荷兰代尔夫特理工大学(DelftUniversityofTechnology)应用科学学院中一个以生物技术为核心的实验室,上世纪80年代开始涉及环境领域。Kluyver生物技术实验室主要以TUDelft微生物学专业为背景而成立(该专业在TUDelft有着悠久的历史,最早可追溯到17世纪),以微生物学家AlbertKlu
摘要:Nereda工艺是一种成熟可靠的应用于污水生化处理的好氧颗粒污泥技术。凭借Nereda反应器的特殊内件及运行周期,Nereda工艺具有同时脱氮除磷的优异性能。以荷兰3座应用Nereda技术的市政污水厂(Epe,Utrecht和Garmerwolde污水厂)为工程案例,详细介绍了它们的概况以及实际的脱氮除磷运行表现。最后
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
在5月份,《水星漫谈》曾介绍过欧盟研究项目“WaterMining”的最新进展。这个项目的重点之一是提取污水中的一种生物聚合物——类藻酸盐物质(Alginate-likeexopolysaccharides,简称ALE)。最近几年,荷兰代尔夫特理工大学(TUDelft)的MarkvanLoosdrecht的课题组有很大一部分的研究都是围绕ALE展开的。荷
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
作为省国资委A类拓新企业、粤海水务下属科研创新核心平台公司,粤海科技公司依托粤海水务产业优势资源,深耕水务新工艺、新材料及低碳节能技术开发应用、智慧水务、环境监测、水务增值业务等领域,积极打造原创技术策源地、培育发展新质生产力、塑造发展新动能。2024年,粤海科技公司涌现一批科技创新
近日,由江苏交建公司承建的长泾第一污水处理厂(一期)工程项目最大单体构筑物——“A/O池及鼓风机组”主体结构顺利完工。该项目位于江苏省江阴市长泾镇,总占地面积约69亩,工程建设内容主要包含污水处理构筑物、设备安装及配套管网等。本次完工的“A/O池及鼓风机组”为厂区内最大单体构筑物,结构尺
各有关单位:我国面临严峻的水资源短缺问题,同时水环境污染、水生态破坏和水空间萎缩等问题依然突出。然而随着工业化进程的加快和产业结构调整,工业用水需求持续增长。工业用水效率总体偏低,部分企业依然沿用传统的高耗水和污染生产工艺和技术设备,如何在保证工业生产效率的同时,减少对水资源的消
作为优化水资源配置、推进生态文明城市建设的举措,科右中旗再生水项目由科右中旗住房和城乡建设局牵头,于2019年开工建设。目前,新建管网16.2千米,新建加压泵站1座,新建1000立方米的调节水池一座,其下辖的污水处理厂将再生水输送至内蒙古能源集团科右中发电有限公司和内蒙古京科发电有限公司,主
【社区案例】我这边是颜料废水,SV30控制在60,经验是说泥量增长缓慢所以前期基本没排泥,现在SV30涨到80-90了,现在开始排泥了,但也是少量的。现在是氨氮有些上涨了,会是排泥造成的吗?(溶解氧控制在4左右)其他指标还可以COD和TN。(来源:污托邦社区)要保证硝化的正常进行,需要保证一定的硝化
2023年,环保产业迎来转折大年,很多环保企业开始出现增长困境。未来,新的增长方向在哪?大家非常迷茫。正如维尔利集团总裁李遥所说,如果把环保产业定义在狭义的“污染治理”领域,那环保市场确实越来越小了;但如果把环保放到广义的“可持续发展”理念中,还是有非常多的机会的。以固体废物为例,它
【社区案例】一级A排放标准,目前出水接近临界值(但总磷很低)请教一下有没有老师知道怎么处理?从描述上看,大概率是营养比失衡导致的,进水CNP比的失衡会导致污水系统的诸多问题,例如污泥膨胀、出水超标等问题,而且是无法通过改变操作条件来弥补的,需要将CNP比调整相应的比例,才能解决,本文将从
近日,金凤污水处理工程顺利通过竣工验收,为建转运奠定了基础。竣工验收会现场金凤污水处理工程位于重庆高新区新凤大道,污水厂总用地面积35071平方米,项目设计总规模为4万立方米/日,本项目为一期工程,建设规模为2万立方米/日。污水处理采用具有生物脱氮除磷功能改良型A2/O生物池工艺,深度处理采
《中共中央国务院关于全面推进美丽中国建设的意见》(以下简称《意见》)近日发布,提出要“建设污水处理绿色低碳标杆厂”。此前不久,国家发改委、住建部、生态环境部联合印发《关于推进污水处理减污降碳协同增效的实施意见》(发改环资〔2023〕1714号,以下简称《实施意见》),对此有更细致的说明,
碳源投加的计算公式的介绍有很多,但是有些小伙伴反映利用公式算出来的值是负数。其实碳源的计算万变不离其宗,只是很多文章照搬前人留下的公式,没有自己的思路或者讲解,让很多人看不懂,碳源投加核心其实就是思路的正确!1、碳源投加计算为什么是负数?1、计算公式选择错误计算碳源的投加量,选对计
近日,湖北郧西县污水厂及设施设备更新改造工程总承包公开招标,合同估算价9340.00万元,建设规模:对郧西县城关污水处理厂(5万吨/日)设备升级改造:更新改造格栅设备14套,生化预处理设备39套,污泥处理设备15套,在线监测设备11套,配套巡查车、吸污车污水处理设施14套;对郧西县其他15个乡镇污水处
近日,《河北省建制镇生活污水处理设施建设技术导则(试行)》印发,导则旨在加快推进河北省建制镇生活污水处理设施建设工作,指导建制镇生活污水处理设施的规划、设计、施工和运行管理,提升全省建制镇生活污水处理设施能力和水平。本导则共分8章及附录,主要内容包括:总则、术语、基本要求、规划、
8月11日,北京科净源科技股份有限公司(股票简称:科净源)正式登陆创业板,发行价为45元/股,总发行量为1714.29万股。募集资金将用于北京科净源总部基地项目、深州生态环保产业基地建设项目、昆明市科净源生产水处理专业设备项目以及补充流动资金。这些投资将进一步推动科净源的发展,加强其在水环境
1923年,上海第一座污水处理厂建成,由此拉开了上海污水处理的序幕。历经百年发展,上海从解放前的3座污水处理厂,3.55万吨/日的处理量,发展成为目前六大片区43座污水处理厂,处理规模超1000万吨/日,上海城市水环境面貌焕然一新。水处理行业的飞速发展为改善水环境、保障水安全发挥了强有力的支撑作
[文章亮点]污水会导致环境熵增,传统污水处理会加剧熵增。资源/能源回收可有效延缓熵增并促进逆熵增。污水中有机物转化不应经厌氧消化产甲烷(高熵物质),需转向回收高值、低熵有机物。污水能源回收应聚焦出水余温热能,热能外输或低温干化污泥后焚烧。不应发展不可降解、不能回收再利用的除污合成材
喜欢足球的朋友,也许听过英超曾经有一支球队叫布莱克本流浪(BlackburnRovers),它曾拿过英格兰超级联赛的冠军(1994-1995赛季)。布莱克本位于英格兰西北部兰开夏郡(Lancashire),人口约11万。这座在足球圈外可能默默无名的小城,最近却在水处理行业获得了一个冠军头衔——2022年3月,该市的城市污水处
生态安全缓冲区是指生态空间中具有消纳、降解和净化环境污染,抵御、缓解和降低生态影响的过渡地带,具有涵养水源、维护生物多样性、稳定生态系统与碳中和等多种功能。近年来,江苏省持续推进生态安全缓冲区建设,通过在太湖、长江、京杭大运河等重点流域建设人工湿地、郊野公园等,因地制宜构建生态屏
厕纸等纤维素成分在污水中含量不菲,它们在生物处理过程中非但很难降解,反而会增加系统的运行负担。因此,国际上已开始从污水中分离纤维素的研究与实践。为探讨纤维素对污水生物处理系统性能与运行的影响,采用小试变形UCT工艺考察了它们的影响程度并揭示出影响机理。结果显示,纤维素存在只会在短期内影响COD、N、P去除,表现为曝气氧量不足。只要提高2~3倍曝气量便可恢复出水水质。
20个污水处理关键参数控制指标
二沉池是污水系统日常运行中最常用的池体之一,也是污水生物处理的最后一个环节。
导读国际水协的ASM活性污泥数学模型是污水生物处理工艺研究与过程模拟的基础平台,也是污水生物处理商业模拟软件的后台引擎与技术核心。作者通过与ASM相关的软件编程体会,系统地介绍了ASM模型体系的历史起源、基本结构和应用特点,对于还没有接触过ASM模型、但希望了解和学用ASM模型的污水处理工艺设计人员和读者是非常好的借鉴资料。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!