登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
当下,污水氨氮含量超标问题被重视,相关处理技术如雨后春笋般纷纷涌现。生物脱氮法、物化除氮法、折点氯化法、化学沉淀法、离子交换法、吹脱法等,均各有优势。
随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮废水污染已经成为当今环境工作者所面临的重大课题。
1 氨氮废水的来源
含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。
2 氨氮废水的危害
水环境中存在过量的氨氮会造成多方面的有害影响:
(1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。
(3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。
3 氨氮废水处理的主要技术
目前,国内外氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
生物脱氮法
微生物去除氨氮过程需经两个阶段。阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
多级污泥系统
此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
单级污泥系统
单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
生物膜系统
将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
物化除氮
物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
折点氯化法
不连续点氯化法是氧化法处理氨氮废水的一种,利用在水中的氨与氯反应生成氮气而将水中氨去除的化学处理法。该方法还可以起到杀菌作用,同时使一部分有机物无机化,但经氯化处理后的出水中留有余氯,还应进一步脱氯处理。
在含有氨的水中投加次氯酸HClO,当pH值在中性附近时,随次氯酸的投加,逐步进行下述主要反应:
NH3 + HClO →NH2Cl + H2O ①
NH2Cl + HClO → NHCl2 + H2O ②
NH2Cl + NHCl2 →N2 + 3H+ + 3Cl- ③
投加氯量和氨氮之比(简称Cl/N)在5.07以下时,首先进行①式反应,生成一氯胺(NH2Cl),水中余氯浓度增大,其后,随着次氯酸投加量的增加,一氯胺按②式进行反应,生成二氯胺(NHCl2),同时进行③式反应,水中的N呈N2被去除。其结果是,水中的余氯浓度随Cl/N的增大而减小,当Cl/N比值达到某个数值以上时,因未反应而残留的次氯酸(即游离余氯)增多,水中残留余氯的浓度再次增大,这个小值的点称为不连续点(习惯称为折点)。此时的Cl/N比按理论计算为7.6;废水处理中因为氯与废水中的有机物反应,C1/N比应比理论值7.6高些,通常为10。此外,当pH不在中性范围时,酸性条件下多生成三氯胺,在碱性条件下生成硝酸,脱氮效率降低。
在pH值为6——7、每mg氨氮氯投加量为10mg、接触0.5——2.0h的情况下,氨氮的去除率为90%——100%。因此此法对低浓度氨氮废水适用。
处理时所需的实际氯气量取决于温度、pH及氨氮浓度。氧化每mg氨氮有时需要9——10mg氯气折点,氯化法处理后的出水在排放前一般需用活性炭或SO2进行反氯化,以除去水中残余的氯。虽然氯化法反应迅速,所需设备投资少,但液氯的安全使用和贮存要求高,且处理成本也较高。若用次氯酸或二氧化氯发生装置代替液氯,会更安全且运行费用可以降低,目前国内的氯发生装置的产氯量太小,且价格昂贵。因此氯化法一般适用于给水的处理,不太适合处理大水量高浓度的氨氮废水。
化学沉淀法
化学沉淀法是往水中投加某种化学药剂,与水中的溶解性物质发生反应,生成难溶于水的盐类,形成沉渣易去除,从而降低水中溶解性物质的含量。当在含有NH4+的废水中加入PO43-和Mg2+离子时,会发生如下反应:
NH4+ + PO43- + Mg2+ → MgNH4PO4↓ ④生成难溶于水的MgNH4PO4沉淀物,从而达到去除水中氨氮的目的。采用的常见沉淀剂是Mg(OH)2和H3PO4,适宜的pH值范围为9.0——11,投加质量比H3PO4/Mg(OH)2为1.5——3.5。废水中氨氮浓度小于900mg/L时,去除率在90%以上,沉淀物是一种很好的复合肥料。由于Mg(OH)2和H3PO4的价格比较贵,成本较高,处理高浓度氨氮废水可行,但该法向废水中加入了PO43-,易造成二次污染。
离子交换法
离子交换法的实质是不溶性离子化合物(离子交换剂)上的可交换离子与废水中的其它同性离子的交换反应,是一种特殊的吸附过程,通常是可逆性化学吸附。沸石是一种天然离子交换物质,其价格远低于阳离子交换树脂,且对NH4+-N具有选择性的吸附能力,具有较高的阳离子交换容量,纯丝光沸石和斜发沸石的阳离子交换容量平均为每10 0g相当于213和223mg物质的量(m.e)。但实际天然沸石中含有不纯物质,所以纯度较高的沸石交换容量每10 0g不大于20 0m.e,一般为10 0——150m.e。沸石作为离子交换剂,具有特殊的离子交换特性,对离子的选择交换顺序是:Cs(Ⅰ)>Rb(Ⅰ)>K(Ⅰ)>NH4+>Sr(Ⅰ)>Na(Ⅰ)>Ca(Ⅱ)>Fe(Ⅲ)>Al(Ⅲ)>Mg(Ⅱ)>Li(Ⅰ)。工程设计应用中,废水pH值应调整到6——9,重金属大体上没有什么影响;碱金属、碱土金属中除Mg以外都有影响,尤其是Ca对沸石的离子交换能力影响比Na和K更大。沸石吸附饱和后必须进行再生,以采用再生液法为主,燃烧法很少用。再生液多采用NaOH和NaCl。由于废水中含有Ca2+,致使沸石对氨的去除率呈不可逆性的降低,要考虑补充和更新。
吹脱法
吹脱法是将废水调节至碱性,然后在汽提塔中通入空气或蒸汽,通过气液接触将废水中的游离氨吹脱至大气中。通入蒸汽,可升高废水温度,从而提高一定pH值时被吹脱的氨的比率。用该法处理氨时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。
液膜法
许多人认为液膜分离法有可能成为继萃取法之后的第二代分离纯化技术,尤其适用于低浓度金属离子提纯及废水处理等过程。乳状液膜法去除氨氮的机理是:氨态氮NH3-N易溶于膜相油相,它从膜相外高浓度的外侧,通过膜相的扩散迁移,到达膜相内侧与内相界面,与膜内相中的酸发生解脱反应,生成的NH4+不溶于油相而稳定在膜内相中,在膜内外两侧氨浓度差的推动下,氨分子不断通过膜表面吸附、渗透扩散迁移至膜相内侧解吸,从而达到分离去除氨氮的目的。
电渗析法
电渗析是一种膜法分离技术,其利用施加在阴阳膜对之间的电压去除水溶液中溶解的固体。在电渗析室的阴阳渗透膜之间施加直流电压,当进水通过多对阴阳离子渗透膜时,铵离子及其他离子在施加电压的影响下,通过膜而进入另一侧的浓水中并在浓水中集,因而从进水中分离出来。
催化湿式氧化法
催化湿式氧化法是20世纪80年代国际上发展起来的一种治理废水的新技术。在一定温度、压力和催化剂作用下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。该法具有净化效率高(废水经净化后可达到饮用水标准)、流程简单、占地面积少等特点。经多年应用与实践,这一废水处理方法的建设及运行费用仅为常规方法的60 %左右,因而在技术上和经济上均具有较强的竞争力。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
各有关单位:随着社会对水环境质量要求的不断提高,以及更为严格的各地方标准的陆续出台,老旧污水处理厂的提价、提标改造和建制镇的污水处理设施新建将成为新的增长点;工业废水处理也是我国环保产业的重要分支,也是实现碳中和的重要路径之一,未来随着各地工业园区建设的推进,以及政策的引导,工业
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
近日,济南市人民政府办公厅发布2024年度市级重点项目安排,合计550个项目,包括420个市级重点建设项目和130个市级重点预备项目。其中包括鲁控再生资源(济南)有限公司章丘区建筑垃圾治理项目(一期)、槐荫区部分区域农村生活污水治理工程项目、光大环保能源(莱芜)有限公司莱芜区垃圾焚烧发电项目(二期)
12月28日,太原市中北高新区上兰新材料园区工业污水处理厂一期工程特许经营项目中标结果公示,中标供应商为北京碧水源科技股份有限公司、中交碧水源建设集团有限公司联合体,中标价格:48912.54万元。据了解,项目采购人为太原中北高新技术产业开发区管理委员会,本项目投资估算约48936.97万元。本项目
12月25日,太原市中北高新区上兰新材料园区工业污水处理厂一期工程特许经营项目中标候选人公示,其中:第一中标候选人:北京碧水源科技股份有限公司、联合体:中交碧水源建设集团有限公司;第二中标候选人:北控水务(中国)投资有限公司、联合体:海绵山水(北京)建设工程有限公司;第三中标候选人:
湖南省工业和信息化厅发布《湖南省工业水效提升三年行动方案(2023-2025年)》,重点技术攻关方向包含火电行业高含盐废水处理、高氨氮废水处理、脱硫废水深度处理技术实现全厂废水零排放等。湖南省工业水效提升三年行动方案(2023-2025年)为深入贯彻落实党中央、国务院关于水资源节约集约利用的决策部
北京排水集团建设的国际上第一座城市污水厌氧氨氧化项目日前通过技术成果鉴定。作为北京市重大科技项目,该项目是国际上率先建成并成功运行的一座典型的城市污水厌氧氨氧化示范工程,研究成果达到国际领先水平。据悉,该项目设计规模为7200立方米/天,自2019年投入运行后,经过3个冬季低温期考验,成功
生物脱氮除磷(BiologicalNutrientRemoval,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。一、A2/O工艺1、厌氧池图1为传统的A2/O工艺流程,首段为厌氧池,本池的主要作用为释
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
1成功入选近日,2022年《国家先进污染防治技术目录(水污染防治领域)》正式印发,泓济环保的复合式连续流序批生物膜法工艺(HBF工艺包)以其在高COD、高氨氮废水处理中的优异性能,成功入选示范技术。2HBF工艺包随着能源化工和精细化工行业的蓬勃发展,行业客户对于水资源的排放和回用要求越来越高,
导读:煤化工是使煤转化为气体、液体和固体燃料以及化学品的过程,是实现煤炭资源清洁利用的重要手段。然而,在煤化工生产过程,吨产品耗水量在5-20吨之间,煤制油、煤制烯烃、煤制甲醇、煤制乙二醇和煤制天然气单位产品取水量,分别约为9.4立方米/吨、20立方米/吨、10立方米/吨、20.8立方米/吨和8.6立
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
为表彰通过网络营销推动数字化经济发展作出示范作用的先锋个人,实现企业数字化营销成果共享,促进社会经济全面振兴。2023年4月20日,由深圳市传统企业网络营销促进会、牛商汇、单仁牛商集团联合举办的主题为《全域营销·创新增长》的2023牛商大会暨第十四届中国电子商务十大牛商颁奖典礼在深圳观澜格
2023年3月28日华东地区市容环境卫生工作第29届年会暨第24届废弃物处理研讨会、2023城市管理技术与装备博览会(简称华东环卫展)在南京国际展览中心举行。此次展会展示面积28000㎡,8大主题环卫展区竞相亮相,200家展商同台竞技,汇集全国环卫人热切关注,有近3万人报名现场观展,呈现环保行业的“饕餮
为符合国家和地方环境政策的要求,改善环境质量,促进城市卫生水平,实现城市发展规划目标,垃圾处理设施建设项目实施是非常迫切和必要的,而在垃圾处理过程中会产生一定量的废水,也必须进行处理。垃圾渗滤液是一种水溶性、高浓度的污水溶液,含有大量的有害物质。渗滤液如果不处理,会污染周围的水环
垃圾渗滤液,是城市生活垃圾在中转站堆放过程中由于微生物的分解作用、受雨水的淋洗以及地表水和地下水的长期浸泡,而产生的一种黑色或者黄褐色的带有恶臭气味的废水。垃圾渗滤液具有高COD、高氨氮、高浓度重金属等特性,导致我国大多数垃圾中转站的垃圾渗滤液处理设备的出水达不到排放的基本要求。因
1月13日,记者从上海市嘉定区安亭污水处理厂了解到,作为市、区两级重大工程和环保类重大项目的安亭污水处理厂三期扩建工程,在去年底前完成了全部生产设施建设,并通过出水水质的测试。新年伊始,这座下沉式污水处理厂开始进入试生产阶段。目前,污水的日处理能力达到5万立方米,出水水质已达一级A+标
对QH2再生水厂旱季(汛前4月、汛后11月)与雨季(主汛期7月)进水污染物负荷变化规律进行监测分析。结果表明:QH2进水污染物负荷受源头用水特性、管网运维状态,以及水厂抽升策略的综合影响。旱季QH2栅前液位与居民用水量均呈双峰分布,且峰值间隔时长接近。管网对上游来水的生物缓冲、稀释缓冲、容积
近日,宁德生态环境通报了两起氨氮总氮超标处罚案例!投加氮源过多致出水TN超标,被处罚11万余元福鼎市某造纸厂被列入年度重点排污单位名录,宁德市福鼎生态环境局依法督促该厂安装了废水自动监测设备,并与生态环境主管部门的监控平台联网。2022年1月11日,宁德市福鼎生态环境局环境执法人员调阅监控
如果要挑选一种食物来代表安徽省休宁县五城镇,那非豆腐干莫属。“卖茶干,卖茶干喽!”五城镇的清晨,往往是在一阵阵的叫卖豆干声中迎来日出。豆制品作坊分布于各家农户,使得五城镇成为黄山市最大的豆制品集中产区。甚至,目前就连五城镇污水处理厂也对豆制品生产产生的污水“情有独钟”。在“奋进新
在污水处理厂硝化系统出现问题,出水氨氮超标时,想要迅速、有效的去除氨氮,只能通过物理化学的手段来应急了!常用且有效的物化手段目前只有折点加氯及沸石吸附法!市场上的很多氨氮去除剂就是次氯酸盐,就是就是利用折点加氯的原理!本文详细介绍一下两种工艺,让大家能做到遇到问题心中有底!一、折
北极星氢能网获悉,近日,大连化物所催化基础国家重点实验室能源与环境小分子催化研究中心(509组群)邓德会研究员和刘艳廷副研究员团队在煤化工废水资源化利用方面取得新进展,研发出以煤化工废水为原料制备高纯氢气联产淡水的新技术,并依托该技术完成了25千瓦级中试装置的测试验证。利用太阳能、风
石化工业是我国的基础工业,是国民经济的重要组成部分,支撑了多个行业的发展。然而,石化行业同时也是水污染“大户”,其产生的废水成分复杂、水量波动大、可生化性差,且由于苯系类和硫化物等有毒物质的存在,常规生物处理工艺很难实现石化废水的高效处理以及难降解污染物的高效削减。好氧颗粒污泥(
近些年来,由于国家经济水平的提高,我国的工业化水平也得到相应提升。然而在国家大力发展的同时,也带来了一些环境问题。目前,工业废水排放问题备受关注,也是亟须处理问题。基于此,文章首先简述了焦化厂工业废水的具体特征,论述了焦化厂工业废水的相关治理方法,以期能够对焦化厂工业废水治理工作
瑞典是世界上较早使用抽水马桶的国家,从旱厕到抽水马桶的演变,折射出瑞典污水处理发展的进步。今天的“水看世界”将带大家了解瑞典污水处理的情况。先来回顾下瑞典的污水处理史吧:19世纪末瑞典的一些大型城市开始第一次建造污水处理系统,铺设地下管道,将厨房和新安装的抽水马桶产生的污水排放到附
摘要:微生物脱氮是一种经济有效的治理水体氮污染的手段。目前微生物脱氮过程主要有厌氧氨氧化、硝化、反硝化及同时硝化反硝化等。铁是环境中普遍存在的金属元素,也是微生物所需的重要微量元素之一。在微生物脱氮系统中,铁盐或者含铁固体化合物等的投加会对微生物及脱氮工艺过程等产生一定的影响,且
蓝天保卫战似乎取得了阶段性的胜利,但是在雾霾渐渐不再之后,臭氧及二氧化氮的威胁仍在。与此同时,为了保住胜利的果实,清洁能源转型仍然十分必要。自向大气污染宣战以来,中国以全世界最快的速度推进PM2.5空气污染的治理。2019年全国平均PM2.5浓度下降了27%。同时,二氧化硫平均浓度下降了55%。这让
蓝天保卫战似乎取得了阶段性的胜利,但是在雾霾渐渐不再之后,臭氧及二氧化氮的威胁仍在。与此同时,为了保住胜利的果实,清洁能源转型仍然十分必要。(来源:微信公众号“能源杂志”ID:energymagazine文:LauriMyllyvirta)能源与清洁空气研究中心分析师自向大气污染宣战以来,中国以全世界最快的速度
蓝天保卫战似乎取得了阶段性的胜利,但是在雾霾渐渐不再之后,臭氧及二氧化氮的威胁仍在。与此同时,为了保住胜利的果实,清洁能源转型仍然十分必要。(来源:微信公众号“能源杂志”ID:energymagazine文:LauriMyllyvirta)能源与清洁空气研究中心分析师自向大气污染宣战以来,中国以全世界最快的速度
1工程概况某污水处理厂地处国家南水北调中线工程水源地丹江口库区,厂区总占地面积为17155㎡,预留用地面积为4035㎡。污水厂现状规模为1.5×104m/d,二级处理采用CASS生物处理工艺,出水达到《城镇污水处理厂污染物排放标准》(GB18918—2002)一级B标准后排入厂外安乐河,并最终汇入汉江。2技术路线2.1
随着工农业的发展和人民生活水平的提高,含氮化合物废水的排放量急剧增加,已经成为环境的主要污染源而备受关注。小伙伴们知道什么是高浓度氨氮废水吗?知道高浓度氨氮废水的危害有哪些吗?今天小编就和大家一起来探寻高浓度氨氮废水的前世今生。含氮物质进入水环境的途径主要包括自然过程和人类活动两
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!