登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 实验装置与方法
超磁分离污泥水解酸化的批次实验在恒温培养箱中进行,实验装置如图1所示,采用7个2L的反应器,接种污泥体积为1.8L。实验开始前,曝氮气3min,以驱除反应器中的氧气,然后使用橡胶塞密封,橡胶塞上开2个孔,分别是氮气袋,以及取样口,反应器采用磁力搅拌器搅拌。
1.3 分析方法
本研究在首创东坝污水处理厂现场进行,每天早晚各取反应器的出水进行相关指标的测定。由于水解消化后污泥脱水性能变差,因此,各指标测定前须对样品进行预处理。预处理主要包括离心及过滤2个过程。离心采用100mL的离心管,设置转速为5000r·min-1,离心45min。然后将上清液用0.45um的微孔滤膜过滤,去除上清液中小颗粒物质,避免阻塞测定仪器并确保测量精度。
常规分析参考文献中的方法,其中TCOD、SCOD采用重铬酸钾法,TN采用过硫酸钾氧化紫外分光光度法,TP采用过硫酸钾氧化钼酸铵分光光度法,SOP采用钼酸铵分光光度法,NH4+-N采用纳氏试剂光度法,VSS和SS采用重量法。pH采用HACHHQ40d测定仪测定。VFAs采用瑞士万通883型离子色谱仪测定。
2 结果与讨论
2.1 污泥水解产SCOD的变化
污泥水解情况可以使用SCOD来表示。2种剩余污泥在不同接种比例下对超磁分离污泥水解酸化的影响如图2所示。由图2(a)和图2(b)可见,2种超磁分离污泥(Rl、R2)自然水解产生的SCOD均在第4天达到峰值,分别为1118.68mg.L—1和2063.50mg.LT1;虽然两者水解得到的SCOD不同,但是从图2(c)可以看出,其SCOD/VSS的变化规律是一致的,最高值均出现在第4天,为110rng^-1。说明2种超磁分离后的污泥水解产酸的效果基本是一致的。
剩余污泥(Wl、W2)自然水解产生的SCOD均在第7天达到峰值,分别为1599.88mg'I/1和‘gSWOmg'L-1。由图2(a)可以看出,2号和3号的SCOD最大值均出现在第4天,分别为lWG.SOmg'L—1和1248.40mg.L—、4号的SCOD最大值出现在第5天,为UeZWmg'L-1;5号、6号和7号的SCOD最大值均出现在第7天,分别为1443.68、1493.96和1599.88mg'l/1。随着剩余污泥比例的增加,不仅可以增加SCOD的析出量,还可以延长其达到最大值的时间;与Rl、W1水解不同的是,由图2(b)可以看出,2〜7号的SCOD最大值均在第7天,并且其随着接种比例的增加而增大,分别为2435.30、2622.70、2668.80、3151.00、3423.20和4954.80mg.L—1。这与苏高强等[12]的研究结果相似。
W1、W2产SCOD出现如此大的差异,推测其原因是:一方面,W1为脱完水后的污泥,其中聚丙烯酰胺(PAM)的存在增加了分子间的团聚性,进而减少了发酵微生物与消化基质的接触,从而减少了SCOD的产量;另一方面,W2为某稳定运行的EBPR系统,污泥中微生物的含量较W1多,水解酸化菌通过对污泥中微生物细胞壁破坏从而促使细胞内容物释放。
2.2 污泥产酸效果分析
水解酸化过程中产生的VFAs主要是由发酵产酸菌对可溶性有机物的吸收转化。实验发现,3种污泥产生的酸主要是乙酸、丙酸、正丁酸、异丁酸和正戊酸,将其乘以相应的系数换算成COD后相加,其和为挥发性有机酸量实验选取Rl、W1进行分析,污泥水解过程中VFAs的生成情况如图3所示。由图3可以看出,VFAs的变化规律与SCOD是一致的,均呈先增大后减少的趋势。1号(超磁分离污泥)自然水解VFAs的峰值出现在第4天,峰值为353.54mg'L1,与SCOD的变化趋势相同的是,混合污泥2〜6号分别在第4、4、5、7和7天,水解液中产生的VFAs达到最大值,分别为399.98、436.52、449.03、520.05和556.97mg.IT1,7号(剩余污泥)自然水解产生的VFAs的峰值出现在第7天,为477.52mg,!/1。从图3中还来可以看出,接种剩余污泥能提高VFAs的产生量,并且随着接种剩余污泥的增加,也能延长其VFAs达到峰值的时间。
在初始阶段,污泥中易降解颗粒物质首先被水解酸化菌转化为VFAs,随着反应的进行,易降解物质被消耗完全,水解酸化菌开始利用较难降解的颗粒及大分子物质,这样导致VFAs的产速变慢。由图3可以看出:混合污泥与超磁分离、剩余污泥比较,更易酸化产VFAs。这是因为一方面混合污泥吸附大量胶体和易降解有机物,水解酸化菌能被有效利用;另一方面,超磁分离污泥中虽然有机物含量很高,但多数属于慢速降解碳源;剩余污泥中的有机物主要存在其细胞内和胞外聚合物中,不经过有效预处理水解酸化菌难以利用。
2.3 VFAs:SCOD及VFAs组分分析
SCOD向VFAs的转化率能直接用来反映污泥的产酸效果。实验选取Rl、W1进行分析,由图4可以看出,在前4d,VFAs:SCOD均逐渐变大,混合污泥VFAs:SCOD比值一直领先超磁分离、剩佘污泥。1〜7号的VFAs:SCOD分别在第4、4、4、5、7、7和7天达到最大值分别为0.316、0.334、0.350、0.360、0.361、0.373和0.299。因此,仅从VFAs:SCOD来看:混合污泥较之于超磁分离具有较高的产酸优势;且剩余污泥接种量的增加也加快了水解酸化的速率,从而加深了酸化的程度。
ELEFSINIOTIS等1171指出,反硝化优先利用乙酸,其次为丁酸(包括异丁酸和正丁酸)和丙酸,最后是戊酸(包括异戊酸和正戊酸)。CHEN等发现,适宜作为除磷碳源的2种有机酸为乙酸和丙酸,从短期看,乙酸作为碳源除磷效果较好,而从长期看,丙酸作为碳源要比乙酸作为碳源的除磷效果好。可见SCFAs的组成情况对其作为碳源被利用具有重要的影响。
由于超磁分离污泥SCOD在第4天即达到最大值,此时选取Rl、W1进行分析,结果如图5所示。实验中污泥水解酸化主要生成5种挥发性脂肪酸,分别为乙酸、丙酸、正丁酸、异丁酸和正戊酸。超磁分离污泥中5种酸的含量大小为乙酸>正戊酸>正丁酸>异丁酸>丙酸,而剩余污泥中5种酸的含量大小为乙酸>丙酸>正戊酸>正丁酸>异丁酸。混合污泥中随着剩余污泥占比的增加,丙酸和异丁酸的含量也有不同程度的增加,正丁酸出现了下降的趋势,而正戊酸的变化不大。从图5中易看出,各种污泥产VFAs中,乙酸均具有明显优势。这与苏高强等M、刘绍根等、吴昌生等的研究结果是一致的。之所以乙酸占比最高,其主要原因为:一方面,水解产物被产酸菌降解为乙酸,且乙酸可以直接从碳水化合物和蛋白质的水解酸化得到;另一方面,其他的有机酸(丙酸、丁酸或戊酸等)在某些胞内酶的作用下也可进一步生成乙酸[M]。
2.4 污泥水解N元素的变化
不同比例的剩余污泥对N元素的影响见图6。超磁分离污泥以及剩余污泥中含有大量的蛋白质,所以水解酸化过程中除了有VFAs、SCOD等有机物溶出以外,还会伴随着N元素的释放。本研究主要以NH丨-N和TN为考察对象。在以往对于污泥厌氧发酵的研究中,都出现了不同程度的N元素的释放对于Rl、W1,由图6(a)可知,3种不同的污泥的NH4+-N都呈现出逐渐增长的趋势。并且随着剩余污泥接种量的增加,NH4+-N的增加量也越大。反应进行到第4天时,1〜7号的增加量分别为78.79、85.97、91.11、94.68、97.28、115.32和115.91mg.L1。
对于R2、W2,由图6(b)可知,3种不同的污泥呈现出与Rl、W1—样的变化规律,不同于Rl、W1的是,其NH丨-N的增加量更大。第4天,1~7号NH4+-N的增加量分别为127.34、147.56、153.53、176.34、206.19、244.41和399.83mg.L1。由于剩余污泥主要是由--些活性生物絮体组成,因此,含有较多的蛋白质,蛋白质水解能释放出大量的氨氮。
系统中的TN主要是以NHI-N的形式存在,由图6(c)和图6(d)中可以看出,TN具有和NH4+-N相似的变化规律。剩余污泥接种量的增加也加快了N元素的溶出,含有大量氮元素的水解酸化液若投加到脱氮系统中,势必增加系统的N负荷。因此,剩余污泥的接种量应该综合考虑氮元素的释放对于整个系统后续的脱氮除磷的影响。
2.5 污泥水解P元素的变化
在污泥的厌氧消化过程中,随着污泥的解体和细胞的破壁,会有大量的磷释放到水解酸化液中。如果将水解酸化液直接用于脱氮除磷的碳源,会增加后续处理的磷负荷。所以,在此之前都会进行前处理,对氮磷进行部分回收。因此,监测P的溶出情况很有必要。
在以往对于污泥水解酸化的研究中,随着时间的延长,都在不同程度上伴随着磷元素的析出。吴昌生等m在对碱预处理絮凝污泥水解酸化影响的研究中发现:在25℃时,磷酸盐浓度在第480分钟达到峰值,为7.65mg·L-1;在35℃时,在第480分钟达到峰值,为15.23mg·L-1。苏高强等发现混合污泥厌氧发酵在第6大时磷酸盐的释放量为mg·L-1。由于超磁分离在污水处理前端就已经去除了系统中绝大多数的磷酸盐,减轻了后续的处理压力,所以对于超磁分离污泥的水解酸化,并不希望有P元素的析出。
对比2种超磁分离污泥(Rl、R2)P的释放情况,由图7可知,不管是TP还是SOP,其值较初始值都没有较大的变化,并没有P的析出。推测可能是由于超磁分离污泥中有PAC(聚合氯化铝),抑制了磷酸盐的释放。对比2种剩余污泥(Wl、W2)的TP,由图7(b)可知,TP的浓度在前5d逐渐升高,在第5天达到峰值,为24.15mg·L-1,此后逐渐降低。由图7(a)可知,2〜6号TP的浓度在3d后分别稳定在 4.31、9.61、16.96、32.81、57.50mg·L-1左右。2 种剩余污泥释磷情况有巨大差异,推测其原因是:W1 来源的东坝污水处理厂采用前端化学除磷工艺,所以污泥中几乎没有P 的富集;而W2 取自某稳定运行的 EBPR中试实验的二沉池污泥,其出水能稳定满足北京市地标(D B 11/890-2012)B 限值标准甚至北京市地标(DB11 /890-2012)A 限值标准出水标准,因此,其二沉池中污泥富集了大量的磷酸盐,污泥水解酸化时,在厌氧条件下导致了剩余污泥中的聚磷菌的释磷。单从P元素的释放情况来看,W2 显然不适合用作接种污泥。
2.6 综合分析
污泥水解酸化旨在获取较多可利用碳源,但同时也存在着氮元素的释放。较高的氮释放势必会增加系统的氮负荷,同时加剧对碳源的竞争,最终降低系统的脱氮效率。因此,在污泥水解酸化反应获得较多碳源的同时尽量减少总氮的释放,即达到较高的△SCOD/△TN值。由于超磁分离后的污泥水解产酸在第4天达到最大值,所以考察了第4天时各污泥的ASCOD/ATN值。由图8(a)可以看出,在第4天,3号的ASCOD/ATN值最大,为9.80,此时,剩余污泥的投加比例为12.2%。
由图8(b)可以看出,在第4天,3号的△SCOD/△TN值最大,为9.86,此时,剩余污泥的投加比例为13.6%。由此可见,在只考虑N元素的影响时,虽然2种剩余污泥来源不同,但其在第4天达到最大值时的污泥接种比例是相近的。综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。
3 结论
1)2种超磁分离污泥(Rl、R2)自然水解产生的SCOD均在第4天达到峰值,剩余污泥(Wl、W2)自然水解产生的SCOD均在第7天达到峰值,随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加。
2)对Rl、W1进行产酸分析发现:剩余污泥接种量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并且会促进丙酸的累积。
3)VFAs:SCOD值的分析结果表明,混合污泥较之于超磁分离、剩余污泥具有快速、髙效的产酸优势,且剩余污泥接种量的增加也加快了水解酸化的速率并且加深了酸化的程度,但是会延长其达到峰值的时间。
4)污泥产酸发酵的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,N元素的释放更明显;对比2种剩余污泥(Wl、W2),W1作为接种污泥时,并没有明显的P元素的释放,当W2作为接种污泥时,伴随着比较明显的P元素的释放。
5)综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
一、污泥的种类污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。它很难通过沉降进行彻底的固液分离。污水处理产生的污泥是典型的有机污泥,其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006Kg/m),呈胶体结构,是一种亲水性污泥,容易管道输送,但脱水性能差。随
摘要:地球磷危机时代已经来临,唯有发掘“第二磷矿”才能有效遏制磷的匮乏速度。剩余污泥焚烧灰分是污水的磷汇,是实施磷回收的最佳位点。因灰分中重金属含量较高,实施磷回收需要将其分离并加以利用。否则,回收磷难以与矿物磷形成竞争。比较各种灰分磷回收方法发现,热化学法中的AshDec工艺可利用金
剩余污泥的排放是活性污泥工艺控制中很重要的一项操作,通常有MLSS、F/M、SRT、SV等方法控制排泥量,本文仅限于活性污泥法,生物膜及MBR工艺不适用。1、污泥浓度(MLSS)法用MLSS控制排泥是指在维持曝气池混合液污泥浓度恒定的情况下,确定排泥量。首先根据实际工艺状况确定一个合适的MLSS浓度值。常规
文章简介资源回收是未来污水处理技术的发展方向,而剩余污泥逐渐被视为资源物质的载体。来自于微生物细胞自溶、细胞分泌物以及细胞表面脱落的胞外聚合物(EPS)占污泥干重的10~40%,主要由多糖、蛋白质、腐殖质、核酸、DNA等物质构成,可作为重金属吸附剂、防火材料、土壤改良剂、生物絮凝剂等,具有
7月1日,福建省云霄县城区污水处理厂剩余污泥处置项目结果公告(包1)发布,项目中标供应商为漳州市绿川生物科技有限公司,中标金额为171.6万元。云霄县污水处理厂年产新污泥量约12000T(污泥含水率80%),服务期限1年,预算价为2256000.00元(单价预算价为188.00元/T),最高限价为210万元(单价最高限
文章亮点首次提出自剩余污泥中同步回收胞内与胞外高分子物质高效、无毒、可生物降解的CTAB为备选表面活性剂CTAB显著强化超声法提取高分子回收的高分子中Al、Na、Ca含量显著降低回收的高分子对重金属离子吸附性能可与商用吸附剂媲美文章简介污水资源化是未来污水处理的发展方向,也是人类可持续发展的必
5月9日,吉林省永吉县绿源污水处理有限公司剩余污泥安全无害化处置项目竞争性磋商公告发布,项目预算金额为污泥处置费330.00元/吨(含税、含运费),合同履行期限为3年。永吉县绿源污水处理有限公司剩余污泥安全无害化处置项目竞争性磋商公告项目编号:JLYX-CG2022001项目概况永吉县绿源污水处理有限公
编者按:污水中20%有机质来源于厕纸,主要成分乃纤维素物质。纤维素化学结构异常复杂、稳定,在污水好氧处理以及后续污泥厌氧消化过程中都很难降解,它们大多残留于消化污泥之中。纤维素与丝状细菌结构上有相似之处,在污水处理过程中可以充当“骨架”而现象可能出现与污泥膨胀类似的污泥絮体蓬松现象
4月18日,福建省云霄县城区污水处理厂剩余污泥处置项目公开招标公告发布,项目预算金额为225.6万元。云霄县污水处理厂年产新污泥量约12000T(污泥含水率80%),服务期限1年,预算价为2256000.00元(单价预算价为188.00元/T),最高限价为210万元(单价最高限价为175.00元/T),采购人为云霄县住房和城
编者按:碳中和背景下剩余污泥厌氧消化产甲烷似乎已被再度被唤起。然而,污泥厌氧消化有机物能源转化效率较低是限制其发扬光大的障碍,这是因为污泥细胞结构、木质纤维素以及腐殖质等成分存在其中。污泥细胞破壁、木质纤维素结构破稳藉预处理手段可以获得程度上的缓解,但腐殖质较木质纤维素结构更加稳
剩余污泥处理/处置目前在我国已成为比污水处理更为棘手的问题。有关污泥处理、处置,“扔(填埋)”和“烧(焚烧)”两种极端方式目前并存。但对于大城市而言,填埋“无地自容”已成为现实问题,这就使得其它处置方式被迫上马,如,堆肥、厌氧消化、干化焚烧等等。从资源/能源回收与投资/运行费用综合
7月7日晚,揭西县应急管理局通报:2023年7月4日中午,揭西县桔香园食品厂停产期间发生一起硫化氢气体泄漏,造成人员意外中毒窒息事故。事故发生后,省、市、县高度重视,迅速成立事故调查组开展调查。经初步调查,硫化氢气体从一个老旧的喷淋塔与水解酸化池连接管的破损处漏出,通过罐体旁的门扩散到库
水解酸化池和AAO工艺中的厌氧池有什么区别?两者是不同的工艺,虽然说都是厌氧环境,但是主要用途是不一样的,水解酸化是为了破链破环,提高进水BC比,提高可生化性的;而AAO中厌氧池A池,虽然也进行一些水解酸化的代谢,但是主要是为了聚磷菌的厌氧释磷提供环境和场所的!本文就具体说说两种池子的区
2022年7月22日,由中国市政工程中南设计研究总院有限公司(以下简称中南市政院)主编的中国勘察设计协会标准《城镇给水臭氧活性炭处理技术规程》、《水解酸化污水处理技术规程》在北京顺利通过审查。中南市政院副总工兼科研院院长万年红、科研院副院长雷培树和邹磊、科研院总工刘海燕等作为主编单位代
若苏州甪直仅凭样貌无法从江南水乡中脱颖而出,那么金黄鲜美的大闸蟹便会勾的游人不请自来。北临阳澄湖,南接澄湖,吴淞江穿流而过,苏州甪直水系发达,纵横交错,属于生态环境敏感地区。近日,泓济环保的UC水解酸化工艺正式入驻这座江南水乡,为苏州甪直新区污水厂(二期)扩建工程提供设备供货、安装、调试及技术支持与培训服务,为提升污水厂整体处理效率、出水稳定达标提供了重要保障。对保持当地水波摇曳、虾蹦蟹跑的美好生态环境,具有积极意义。
水解酸化与厌氧消化是最常见的细菌厌氧代谢的利用,本文两者有什么异同点,本文将详细的介绍一下!
高效水解酸化+改良型奥贝尔氧化沟+深度处理。水解酸化与氧化沟分别为独立的污泥系统,氧化沟缺氧与好氧池的比例大致在3:2,缺氧池可以很快的转变为池。来水全部为化工园区和企业处理后排放的尾水。
一、什么是水解酸化工艺?厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。在这一过程中同时可以将悬浮
有关水解酸化工艺的解释,大家一起来学习吧!在回用水处理工艺中,水解酸化池的作用是重要的一个环节。水解是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化是有机物降解的提速过程,因为它将水解后的小分子有机物步
摘要:为了研究水解酸化工艺处理印染废水机理及其必要性,尝试用分子量及其分布和聚乙烯醇(PVA)降解程度作为论证指标,并综合后续好氧生物处理。提出以VFA产生和pH显著下降作为印染废水水解酸化的评判标准是不适用的;印染废水水解酸化的作用主要在水解阶段,COD虽没有明显降低,但分子量和PVA随着反应
水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!