登录注册
请使用微信扫一扫
关注公众号完成登录
技术途径:能源替代、生产线改造、碳捕集及绿色智能化等
水泥行业需大力推广应用节能减排技术,进而为达到碳中和目标做出积极贡献。水泥行业是二氧化碳排放大户,其排放主要来碳酸盐的分解、燃料的燃烧和电力消耗。进一步在生产工艺碳减排(如替代原料、熟料替代技术等)、生产能耗碳减排(如替代燃料、富氧燃烧技术、高效粉磨、余热发电等)、新技术碳减排(如水泥窑二氧化碳捕集利用)及新能源技术等方面加强技术研发力度。
海螺水泥通过一系列手段降低碳排放实现碳中和,2020年预期将吨熟料二氧化碳排放较2016年减少0.0045吨,2025年预期将吨熟料二氧化碳排放较2020年下降0.0031吨。同时引进新技术将二氧化碳废气转化为二氧化碳产品。根据水泥网报道,海螺水泥通过一系列手段降低碳排放实现碳中和。如新型干法水泥生产线、富氧助力水泥熟料煅烧和水泥窑烟气二氧化碳捕集利用等方法。其中水泥窑烟气二氧化碳捕集利用技术拥有世界首条水泥窑烟气二氧化碳捕集纯化示范项目,规模为50000吨CO2/年,实现了二氧化碳资源化利用。水泥行业的碳中和新技术对水泥厂商技术实力均有较高的要求,显然有利于龙头企业。
行业龙头中国建材、海螺水泥、金隅集团等在排放密度上相对其他企业略低,2019年中国建材和金隅集团碳排放密度分别为0.81和0.61,规模较小的东吴水泥碳排放密度为0.9。水泥行业在碳排放中和路径方面具有一定规模效应,2019年中国建材、海螺水泥和金隅集团碳排放密度分别为0.81、0.84和0.61,熟料生产量分别为315,348千吨、253,000千吨和11000千吨,东吴水泥碳排放密度为0.9而熟料产量仅为86.1万吨。
总体来说,水泥行业主要依靠行业政策、减少供给减排,目前技术减排作用有限,仍需要不断的发展应用。水泥不同于其他行业,目前有60%的碳排放是由石灰石分解产生,35%是煤炭,剩下是电等,通过节能带来的碳下降效果远不够。业内人士指出,目前核心还是对石灰石的用量。但是水泥的特质,石灰石用量下降,产量就会下降,因此主要还是控制产量。想达峰,熟料的产量必须下降,后面还有能源效率提升,碳捕捉技术等。
玻璃行业碳中和:推广清洁能源
在平板玻璃生产中,二氧化碳排放源类型主要有化石燃料燃烧排放(60%以上)、过程排放(25%以上)、购入和输出去的电力及热力产生的排放三大类。其中化石燃料燃烧排放占比最高,占整个碳排放的60 %以上,燃料燃烧产生的二氧化碳排放包括三部分:1)玻璃液熔制过程中使用重油或天然气等燃料燃烧产生的排放;2)生产辅助设施使用燃料燃烧产生的排放(生产辅助设施主要包括用于厂内搬运和运输的叉车、铲车、吊车等厂内机动车辆以及厂内机修、锅炉、氮氢站等设施);3)厂内自有车辆外部运输过程中燃料消耗产生的排放。过程排放占比达25%以上,主要包括原料配料中碳粉氧化产生的排放和原料碳酸盐分解产生的排放。
CO2总排放量与平板玻璃的产量密切相关,2005—2014年期间随着平板玻璃产量逐年增加,CO2排放量也逐年增加,并于2011年达到峰值后逐渐趋缓。从单位重量箱玻璃碳排放总量分析,一直处于下降趋势,从2005年的58.79kg下降到2015年的52.46kg,下降幅度达12%。其中,燃料燃烧碳排放下降10.1%,生产工艺碳排放下降12.5%,电力碳排放下降20.0%.这主要是由于浮法生产技术带来的生产水平提高、生产规模扩大等原因引起的。浮法生产技术的最大优势是能耗的降低,浮法技术的推广使得更大的熔窑得以应用,相较于中小型熔窑,大型熔窑的保温效果更好和燃料利用效率更高,使得浮法玻璃每重量箱熔化标准煤耗比普通玻璃低10%左右,碳排放相对较少。
在平板玻璃行业3大主要碳排放类型中,化石燃料燃烧占整个碳排放的60%以上,所以节约能源、优化燃料结构、提高燃烧效率等是减少碳产生和排放的主要途径。通过玻璃熔窑引入氧气燃烧系统、优化燃料结构、燃料低碳化和组合电力与化石燃料能够实现节约能源;玻璃熔窑内保温、改进燃烧器并且采用低温熔化技术能够提高燃烧效率,减少碳排放。此外,采用配合料预热技术可以大大降低熔化温度,减少燃料用量,燃烧生成的C02也会随之减少。如以流化床预热或特殊预热器预热,则C02的排放量可降低15%以上。与此同时,大型熔窑在节能、保温等方面要优于中、小型熔窑,熔化单位质量的配合料所需燃料更少。对于新建的平板玻璃项目,推荐使用天然气并配备大型熔窑( 日熔化量 650t 以上) 的浮法玻璃生产线,以减少CO2排放。
瓷砖行业碳中和实现路径:煤改气+技术降排
在陶瓷生产中,二氧化碳排放源类型主要有燃料燃烧、电力生产和碳酸盐分解过程三个阶段。燃料燃烧、电力生产和碳酸盐分解过程二氧化碳排放贡献比分别为63%、32%和5%。陶瓷砖CO2排放的主要环节为陶瓷砖的干燥烧成(喷雾干燥塔和烧成窑炉为高能耗设备)和原料粉磨,CO2的主要来源是燃料燃烧的直接排放和电力生产的间接排放。
建筑陶瓷生命周期碳排放量为9.59kg CO2/m2。彭军霞等在《建筑陶瓷碳计量与优化模型研究》中的研究表明,坯砖、抛光砖和釉面砖的碳足迹分别为每平方米产生15.02kg、16.8kg和15.96kgCO2,曾杰等在《基于生命周期理论的建筑卫生陶瓷碳足迹研究》中综合考虑原材料生产、上游能源生产、原材料运输和产品制备四个阶段的碳排放过程,计算出建筑陶瓷生命周期碳排放量为9.59kg CO2/m2。
燃料燃烧过程中二氧化碳排放量最大,瓷砖行业碳中和主要靠煤改气实现。近年来“煤改气”力度进一步加大,集中度有望进一步提升。部分落后产能以及环保不达标的陶瓷企业被逐步淘汰及出现被关停整改。
至2020年底,全国陶瓷企业天然气使用率达53%,非天然气(含水煤气、煤层气、焦化气、电等)使用率达47%。其中,天然气使用率排名前五的省份分别为山东(天然气使用率为96.30%),四川(天然气使用率为95.50%),福建(天然气使用率为93.10%),广东(天然气使用率为82.20%),辽宁(天然气使用率为63.80%)。据中国建筑卫生陶瓷协会会长缪斌预测,2021年结束之后,全国陶瓷企业天然气使用率会达到60%以上。
受到燃料价格上涨的影响,不同陶瓷产区各类陶瓷产品燃料成本均有所上涨。在普遍能耗下,厚度为11mm的800×800mm抛釉砖用天然气生产燃料成本普遍增加超过2元/㎡,身处气源地的四川夹江在天然气价格上涨后仅增加0.7元/m²。山东淄博、河北高邑用气比用煤成本增加均超过3元/㎡。
虽然煤改气普遍提高了原料成本,但陶瓷生产企业在实施“煤改气”政策后,具有较大的节能效益和环保效益。根据《陶瓷企业燃料“煤改气”技术措施及节能环保效益》一文分析,陶瓷生产企业在实施“煤改气”政策后,具有较大的节能效益和环保效益。1)节能效益方面,一条日产地砖24000平方米的窑炉对比节能率为:(3.24-2.11)/3.24×100%=34.88%。该窑炉每小时使用煤制气量为10650m3/h,生产每平方米产品的煤气单耗为10.65m3/平方米产品。实际上由上述煤气站生产热值为6281kJ/Nm3的煤制气,其煤气产率为3.08m3/kg时,由于存在煤气发生炉制造煤制气的工艺过程中各项损失,需要使用热值为27416kJ/kg的原煤量为3.46kg/平方米产品。使用原煤折标准煤3.24kgce/平方米。如果该窑炉使用天然气时,若按窑炉使用热值为35335kJ/平方米,每小时使用天然气量为1850m3/h,天然气单耗为1.75Nm3/平方米,使用天然气折标准煤2.11kgce/平方米。对比原来使用的煤制气,无煤气发生炉制造煤制气的工艺过程中存在较大的各项能量损失,而且改为使用天然气之后,由于降低窑炉燃烧过程空气系数,减少了入窑的助燃风量和出窑的排烟量,减少了排烟热量损失,从而降低了窑炉实际运行能耗。2)环保效益方面,节约基建投资1200万元,节约设备投资1000万元。“煤改气”后不使用燃煤,消除了烟气SO2排放,燃烧过程粉尘排放,减轻了环保设备的负担。厂区取消了燃煤堆放仓储、煤气站、煤•渣堆放场地,减少了陶瓷企业的用地面积。以日产60000平方米仿古砖,4条窑炉生产线规模的陶瓷厂来预计,可节约用地20000平方米,节约基建投资1200万元,节约设备投资1000万元。
除此之外,“十三五”规划中建筑陶瓷行业提出的重点节能减排措施包括:瓷砖薄型化技术、新型干法制粉技术、清洁能源实用技术、窑炉燃料循环利用技术、低温烧成技术等。干法制粉、低温快烧和多层干燥窑技术的碳减排潜力分别达50.76%、13.98%和1.44%,建筑陶瓷行业推进技术的革新将有效降低碳排放。根据碳排放核算结果可知,采用湿法和干法制粉技术碳排放分别为17.200kgCO2eq./m2和8.450kg CO2eq./m2,碳减排潜力达50.76%。能源生产阶段和产品生产阶段碳减排潜力分别贡献21.13%和29.63%。低温快烧技术与普通烧成技术相比,陶瓷砖生产阶段能耗降低10MJ/m2,碳排放降低13.98%,每平方米陶瓷砖可降低温室气体2.40kgCO2eq./m2,核算边界内CO2、CH,和N2O排放量折合成二氧化碳当量相比传统烧成工艺分别降低14.12%、0.70%和16.72%。
采用不同的干燥技术对瓷砖生产的碳排放量也会产生影响,多层干燥窑技术可以节约能源、降低碳排放。采用多层干燥窑技术能源生产阶段CO2、CH,和N₂O分别增加1.08%、1.01%和1.17%,陶瓷生产阶段降低3.31%、3.61%和0.00%。采用五层干燥窑相比一层干燥窑,干燥烧成阶段能源利用率高、散热面积小、煤耗降低5.5%,从而降低了陶瓷砖生产阶段燃料燃烧的温室气体排放;同时,需增加8.8%的电力用于传送陶瓷砖,增加了电力生产阶段的碳排放,碳减排潜力为1.44%。多层干燥窑技术中CO2、CH,对降低碳排放贡献分别为1.019%和0.421%。额外需要的电力生产间接排放的N2O提高碳排放比为0.002%。
总体来说,建筑材料工业全面实现碳达峰的关键环节包括:1)处理好发展与碳减排的矛盾。2014年建筑材料工业碳排放达到历史高点以后,全行业碳排放量缓慢下降,但以2018年为节点,随着建筑材料工业生产增长,2019年和2020年全行业碳排放量有所回升,再次达到14.8亿吨。依靠创新驱动,加快转变行业发展方式、推进产业结构调整和技术进步等手段将是处理好发展与碳减排矛盾的关键。2)抓好水泥、石灰等重点产业的碳排放总量控制。2015年以后受水泥产品结构变化等因素影响,全行业碳排放量呈连续增长态势。目前,水泥碳排放占全行业碳排放总量84.3%,其中燃料燃烧排放占全行业燃料燃烧排放总量的75.5%,过程排放占全行业生产过程排放总量的89.9%。水泥行业成为建筑材料工业全面实现碳达峰的关键产业。冶金、化工、火电等行业石灰需求量的增长,使2018年以后石灰行业产量迅速回升,石灰行业碳排放总量呈现上升态势。3)积极推进能源结构调整。建筑材料工业使用替代燃料具备巨大潜力。建筑材料工业增加对天然气等清洁能源的利用,还需要与清洁能源供给能力及建筑材料各行业工艺适用性相衔接。4)调节国内外市场供需。以水泥为例,2020年我国水泥熟料进口3337万吨,相当于国内水泥工业减少二氧化碳排放2500万吨。在国内水泥及水泥熟料市场需求及价格、各个国家水泥产能及市场等因素综合作用下,进口水泥及水泥熟料将成为国内市场重要的调节因素,也将对我国建筑材料工业控制碳排放总量产生重要影响。
2.5基础化工:“碳中和”或将催生新一轮供给侧改革,从能耗控制、新能源材料和可降解三个角度挖掘投资机会
中国是世界第一大CO2排放国,碳中和或将催生化工行业新一轮供给侧改革。根据BP公司统计数据,2019年我国CO2总排放量达98.26亿吨,碳排放量位列世界第一,其中钢铁、水泥、化工三大行业CO2排放量达到50亿吨,占全国碳排放总量的50%左右。碳中和概念的提出或将加速我国能源结构的调整升级,化工行业将面临新一轮供给侧改革,高能耗化工子行业或将迎来产能结构的重新布局。在碳中和的大背景下,高耗能行业的龙头企业或凭优质存量资产脱颖而出,推动行业集中度进一步提升。
针对碳中和问题,我们从生产端、材料应用端以及能源消费端,三个层面分析化工行业或将迎来的机遇与挑战。具体观点如下:
①生产层面:“碳中和”将不断压缩高耗能产业供给,产业链中的中小公司或将在成本压力下被迫出清。在碳中和背景下,技术先进且资金实力雄厚的化工企业,有望不断提高市场份额。建议关注煤化工、氯碱等行业的投资机会。
②材料应用层面:可降解塑料、生物质、碳捕捉等材料有望迎来发展机遇期。发展绿色、环保的可降解材料,有利于减少碳排放以及自然界的存留,促进碳循环,同时保护环境。建议关注:PVA,生物柴油、尾气处理材料等板块投资机会。
③能源消费层面:清洁能源在总能源消耗中占比有望大幅提升,清洁能源行业将迎来重大发展。在能源领域,光伏、风力、水利以及核能发电,占我国总发电量比重存在增长空间。在交通运输领域,发展新能源汽车是实现道路交通“碳中和”的关键。能源革命,建议关注光伏、风电等新能源材料端的投资机会,如:工业硅、碳纤维等。
高耗能、高排碳行业或将迎来二轮供给侧改革,建议关注煤化工、氯碱投资机会
煤化工行业必不可少,二轮供给侧改革预计加速强者恒强趋势。我国是一个“富煤、贫油、少气”的国家,约70%的能源消耗直接依赖于煤炭的燃烧与加工,煤化工行业作为以煤为原料的排碳大户,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程中不得不排放CO2。但又由于传统煤化工行业在化工工业生产中具有举足轻重的作用,其产品端对应的多种工业原料(如甲醇、烯烃等)与人们日常生活息息相关,因而煤化工工艺路线即使放眼未来40年,依然不可或缺。另一个层面,目前我国在很多煤化工产品如聚烯烃等材料依然要依赖进口,截至2020年底,聚乙烯树脂和聚苯乙烯树脂的对外依存度依然分别高达46.5%和27.7%。
氯碱属于高耗能行业,未来产能扩张或将受限,行业存在景气度结构性提升发展机遇。氯碱产业属于化工板块中典型的高耗能产业,由于我国电力能源消费结构中,目前70%仍依赖火电,在“碳中和”背景下,高耗能化工产业预计将会受到产能扩张限制。以近期内蒙古出台的《关于确保完成“十四五”能耗双控目标任务若干保障措施》政策为例,自2021年起,PVC、纯碱等高耗能行业新项目不再获得审批,由此可见氯碱行业未来的产能扩张正在受到限制。从产能结构层面分析,根据卓创资讯数据,截至2020年底,国内PVC行业总共名义产能2712万吨,根据我们的分析,当前行业有效产能大约在2300万吨。从需求层面分析,PVC主要应用于房地产领域,截至2020年底国内PVC的表观消费量达到2075万吨。基于上述供需数据计算出的行业名义产能利用率及实际产能利用率分别为76.5%和90%,我们认为随着未来限产限电等产业趋势的影响,未来PVC行业供给或将继续收缩,行业存在景气度结构性提升发展机遇。
新能源材料板块迎机遇,关注碳纤维行业投资机会
风电叶片大型化,碳纤维逐步替代玻纤趋势逐步确立。目前全球风电巨头为了降低风电的度电成本,提升产品盈利能力,均采用了风电叶片大型化、轻量化的发展目标。为降低成本,必须增加发电时间,提升风机捕捉风能的能力,其中一个最主要的途径就是增加叶片的扫风面积、增大叶片的直径。据统计,风电叶片尺寸迅速发展,2010到2019年,叶片的长度从100米逐步增长到125米,预计未来叶片尺寸还将进一步增大到150米甚至更高。随着叶片的长度逐渐增加,对于叶片的质量控制便提出了更高的要求。据了解,传统的叶片制造材料主要为玻璃纤维复合材料,但玻纤叶片重量比较大,已经无法满足风电叶片大型化的发展趋势。而碳纤维复合材料比玻璃纤维复合材料具有更低的密度,更高的强度,可以保证风电叶片在增加长度的同时, 大大降低叶片重量。
国内风电碳纤维需求强劲。2018年,全球风电装机容量达到592GW,同比增长9.48%。根据 GWEC 的预测到 2023年风电累计装机容量将达到 909GW,2019-2023 五年复合增速将达9%。根据《2018年碳纤维复合材料市场报告》数据,2018年我国风电叶片所需碳纤维达到8000吨,同比增长161%,成为我国碳纤维产业重要增长点。
尚未被发掘的可降解材料,PVA行业存在潜在机遇
PVA是一种应用领域尚未被完全挖掘的可降解材料。聚乙烯醇(PVA)是一种用途广泛的水溶性高分子聚合物,能够快速溶解于水中,形成稳定胶体,其性能介于塑料和橡胶之间,特点是粘结力强、致密性好、结晶度高,除了作纤维原料外,还被广泛用于生产粘结剂、涂料、纸加工剂、乳化剂、分散剂和薄膜等产品。另一方面,PVA是唯一可被细菌作为碳源和能源利用的乙烯基聚合物,在细菌和酶的作用下,46天可降解75%,属于一种生物可降解高分子材料,可由非石油路线大规模生产,价格低廉,其耐油、耐溶剂及气体阻隔性能出众,在食品、药品包装方面具有独特优势。在碳中和大背景下,可降解材料具备广阔应用前景,我们认为PVA是应用领域尚未被完全挖掘的材料,未来发展具有广阔机遇。
据我们此前统计,国内PVA企业在2000年以前投产的约37万吨,2000~2012年投产的约48万吨,2012年后投产的约40万吨。目前行业名义产能达到120.6万吨,而从我们的产业调研来看,实际上行业内的有效产能仅为80万吨/年左右,行业内存在较多无效产能,特别是2000年之前投产的产能,在行业盈利低迷时期已处于关停状态,甚至有些产能已处于长期停产。此外,近年来,国内中东部PVA生产商也因其成本较高而陆续关停或向下游转型,国内PVA行业已处于重新洗牌后的新局面。
2.6石油化工:落后产能加速出清,氢能发展潜力
碳中和主要是减少二氧化碳的排放量,对于石化化工企业,主要有两种途径减少二氧化碳的排放:
提高能量利用效率,通过减少单位产品的能量消耗;
通过零碳排放比如氢能,抵消或者覆盖二氧化碳排放;
化石燃料用量减少是一个渐进的过程,前半段主要通过单位热值更大的天然气、氢气(氢含量高)等对煤炭的逐步取代,后半段通过光伏、核电、风电等实现对化石燃料的替代。
碳中和促使全球炼厂落后产能加速出清
太阳能、风能、地热等都是可再生的清洁环保能源。在技术进步与政策引导的双重作用下,太阳能和风能成为近年发展最快的可再生能源。国际石油公司对生物能源的投入虽有反复,但近两年明显加大投入,通过资本运作快速进入市场,借助与领先企业的合作实现共赢发展。全球炼厂在传统项目上的资本开支明显在缩减,从油气供应商向综合能源供应商转变。
Valero, Marathon Petroleum, Phillips 66, HollyFrontier, PBF Energy和Delek US,这几家公司总炼能占美国总炼油能力的一半。2020年以来,从以上6家代表性美国炼厂可以看出一个大趋势,美国的独立炼厂公司在大量关停自己的传统炼油厂,生物燃料获得了增量投资。传统炼厂转向生物质燃料,关停传统原油加工炼厂。从资本开支方面也可以看出,传统炼厂的资本开支更多的往生物燃料上倾斜。
总体来讲,全球的炼厂结构性调整将加剧,中国的大型炼化项目陆续投产,美国等其他海外炼厂尤其是单体小、竞争力差的炼厂持续淘汰。2021年,中国就将超过美国成为全球第一大炼能的国家。
氢能未来潜力巨大
氢能前景广阔
根据《中国氢能产业基础设施发展蓝皮书》,2030年,氢能源产业链目标市场空间将达10000亿元,能源形式利用氢规模将达到1000亿立方米/年。国际氢能委员会预测到2050年全球氢能产业链产值将达到2.5万亿美元,占能源比重约为18%。氢能具备明显优势, 优化能源结构、保障国家能源安全的战略选择。
煤炭仍是主要的制氢来源
供给端:制氢路线多元化,煤制氢为最大供氢方式占比62%。工业制氢技术主要有以煤、天然气、石油等为原料的催化重整制氢,氯碱、钢铁、焦化等工业副产物制氢,生物质气化或垃圾填埋气生物制氢,采用网电或未来直接利用可再生能源电力电解水制氢;
制氢技术正向在可再生能源制氢转变,处于实验室阶段但潜力大的有光催化分解水、高温热化学裂解水和微生物催化等先进制氢技术。煤炭和天然气是我国人工制氢的主要原料,占比分别为62%和19%,电解水占比4%,可再生能源电解水制氢占比不足1%,未来发展潜力大。
氢气规划逐渐加速
截至2018年底时,全球共有369座加氢站,新增48座。中国排名第四,在运营15座,已建成22座,80%的加氢站集中在广东、上海、江苏、湖北、辽宁五个省份地区。规划2025年,全球有望超过1000座,日本、德国和美国分别达到320、400和100座,挪威、意大利和加拿大约5-7座。
据《中国氢能产业基础设施发展蓝皮书(2016)》,对我国中长期加氢站建设和燃料电池车辆的发展目标做出了规划,我国计划在2020、2025、2030年分别建成100、300和1000座加氢站,建设将由政府、产业联盟和企业将共同参与。加氢站单站建设成本1200-2000万元以单站建设投资1500万元,单站补贴300万计算,加氢站投资市场规模在135亿元左右,政策建设补贴在27亿元左右。
当前化石原料是主要的用氢场所,但汽车后续潜力大
中国化石原料方面用氢达数千亿规模,年需求量达千万吨级。2017年需求量和产量分别为1910万吨和1915万吨,均居世界首位。主要用在提炼原油。对人造黄油、食用油等其它产品中的脂肪氢化。在玻璃及电子微芯片制造中去除残余的氧。用作合成氨、合成甲醇、合成盐酸的原料,冶金用还原剂。由于氢的高燃料性,航天工业使用液氢作为燃料等。
汽车后续潜力大,年需求量将达百万吨级,随着用氢规模扩大以及技术进步,用氢成本将明显下降,根据中国氢能联盟预计,未来终端用氢价格将降至25-40元/kg。同时燃料电池和电池零部件的更新发展将进一步推动氢能源汽车发展,汽车氢能需求将有极大的上升空间。
2.7环保:碳中和背景下碳监测、负碳技术和垃圾分类处理需求将明显提升
碳监测:碳中和背景下需求将明显提升,CEMS或将成为主流监测方法
碳监测主要指对二氧化碳等温室气体排放进行监测和核算。目前国际上主要存在两种监测温室气体排放的方法,即核算法和测量法。核算法主要通过燃烧原料的量计算温室气体排放量,而测量法主要通过使用烟气在线监测系统(CEMS)直接测量排放量。
碳排放的监测与核算是实现碳中和的基本要求。3月25日,发改委环资司召开碳排放核算专家座谈会。与会专家一致认为,建立统一规范的核算体系、摸清碳排放“家底”,是做好碳达峰、碳中和工作的当务之急,也是开展碳达峰前景分析的基本要求。下一步,环资司将组织有关机构和专家,尽快研究提出科学合理、简明适用的碳排放核算要求,明确核算边界与核算方法,指导各地区各行业扎实开展碳排放摸底和达峰前景分析。
使用CEMS的测量法在精度具有一定优势,未来有望得到推广。传统核算法由于各种类型锅炉燃效煤炭效率不同、人为干扰多等因素,核算法存在一定的误差。而研究表明,使用CEMS的测量法通过直接测量烟气流速、CO2浓度和湿度等参数即可得到温室气体排放量,相较核算法而言,数据精确度有明显提升。同时随着技术的进步,以及大规模使用后产生的规模效应,单套设备的成本有望下降。目前欧盟同时使用核算法和测量法,而美国目前主要使用测量法。我国在发展环保产业时参考欧美的环保经验较多,未来在精度和成本的驱使下可能将CEMS作为主要监测方法。
纳入碳排放权交易市场的行业与公司都是潜在的CEMS客户。目前电力行业已进入全国碳交易市场,首批纳入的电力企业达到2225家。随着碳交易市场建设的持续推进,预计“十四五”期间钢铁、建材、有色等高耗能行业企业也会纳入碳交易市场,对应碳监测的需求巨大。
负碳技术:实现碳中和的必要条件,相关行业前景广阔
碳汇是指通过植树造林、森林管理、植被恢复等措施,利用植物光合作用吸收大气中的二氧化碳,并将其固定在植被和土壤中,从而减少温室气体在大气中浓度的过程、活动或机制。土壤是陆地生态系统中最大的碳库,在降低大气中温室气体浓度、减缓全球气候变暖中,具有十分重要的独特作用。有关资料表明,森林面积虽然只占陆地总面积的1/3,但森林植被区的碳储量几乎占到了陆地碳库总量的一半。
中国2019年森林覆盖率为22.96%,还有很大的提升空间。根据世界银行数据,2016年,全球森林覆盖面积为30.72%,2018年日本的森林覆盖率为68.4%、韩国为64.7%、加拿大为38.7%、美国为33.9%、德国为32.7%、法国为31.2%。中国的森林覆盖率还有很大的提升空间。我国城市园林绿地面积稳步提升,2019年达到41.51%。
碳中和背景下生态修复及园林绿化需求将会持续提升。由于国家对生态环境治理的重视,我国生态修复和园林绿化行业在过去10年实现了快速发展。碳汇是实现碳中和目标的必要手段,不仅可以吸收温室气体,同样对保护环境有巨大的作用,我们认为未来生态修复和园林绿化行业都将得到快速的发展,市场规模有望迅速扩大。
碳捕集、利用与封存(CCUS)技术,即把生产过程中排放的二氧化碳进行提纯,继而投入到新的生产过程中进行循环再利用或封存。目前我国对CCUS技术的研发和示范给予了积极的关注,在国家气候变化相关规划中的文件中也明确提出加强CCUS技术的开发。目前我国开展CCUS试点项目的行业涉及火电、煤化工、水泥和钢铁行业。发达国家日益重视CCUS技术的规划与应用,美国、英国、加拿大等国家不仅将CCUS视为推动传统产业结构调整和优化的重大减排技术,更瞄准该技术未来可观的市场效益。
二氧化碳的资源化利用前景广阔,但目前由于技术原因,经济性差,难以实现产业化,建议关注技术升级带来的成本下降。二氧化碳的资源化利用技术包括合成高纯一氧化碳、可降解塑料、烟丝膨化、化肥生产、油田驱油等,其中合成可降解塑料和油田驱油技术产业化应用前景广阔。目前CCUS由于技术原因,捕集、运输、利用等各个环节成本都较高,中短期内都难以实现经济化。负碳技术是实现碳中和的必要技术,CCUS技术的研发有望得到政策和资金支持,我们认为可以持续关注CCUS技术进步带来的成本下降。
垃圾分类处理:提高垃圾资源化比例、减少碳排
垃圾的分类处理对实现碳中和目标具有积极帮助。上游端的垃圾分类可以通过分类投放、收集,将可回收的资源(塑料、橡胶。金属等)从垃圾中分离出来,实现更高效的资源化。同时,干湿垃圾的分类可以提高垃圾焚烧的吨垃圾发电量,提高能效。下游端的垃圾焚烧发电可以对垃圾进行有效的减量化、无害化、资源化处理。与垃圾填埋相比,可以有效减少占地面积并降低土地二次污染的风险。与火力发电对比,焚烧发电用焚烧余热利用代替化石燃料从而在一定程度上减少温室气体排放。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月8日,在2025年德国慕尼黑智慧能源展览会(ThesmarterEEurope)期间,远景科技集团面向全球发布《2025零碳行动报告》(下称《报告》),宣布自2022年起连续第三年实现运营碳中和,并于2024年成功实现100%可再生电力使用,提前一年达成RE100承诺,彰显出其在绿色能源转型领域的卓越领导力与高效执行力
4月下旬,在大邱举办的2025韩国国际绿色能源展上,盛能杰携全新单相并网逆变器SE2-10.5KTL系列,三相并网逆变器SE100-125KTL-M3系列,以及三相储能逆变器SE12-30KHB系列,精彩亮相。这些新机型具备出色的发电效率和可靠的安全性能,能通过灵活的系统配置满足韩国用户的多元化需求。作为光伏并网以及储能
北极星氢能网获悉,5月8日,河南省孟州市人民政府发布关于孟州市支持氢能产业发展若干政策的通知,通知显示,支持科技创新,对投资超过5亿元的氢能产业项目,以鼓励氢能产业发展的普惠性政策方式给予不高于5000万元的研发补贴。支持项目招引,聚焦制氢装备、储存装备、运输装备、加注装备、燃料电池核
万物逐绿,春风报喜。在南方五省区,绿色低碳技术加快应用,近零碳建筑焕然一新,绿色发展图景欣欣向荣。今年《政府工作报告》提出,“积极稳妥推进碳达峰碳中和”“建立一批零碳园区、零碳工厂”。近年来,南方电网公司持续提升清洁能源消纳水平和能源利用效率,因地制宜打造近零碳示范区,初步形成评
日前,内蒙古自治区碳达峰试点(康巴什区)实施方案发布。根据方案,通过3年创建,达到以下要求:确保康巴什区率先实现碳达峰目标,2023年康巴什区绿色低碳发展取得明显成效,碳排放增长趋势减缓;到2025年康巴什区单位GDP能耗下降率、单位GDP碳排放下降率均超额完成市政府下达目标任务,先行先试推进
北极星储能网获悉,4月22日,内蒙古鄂尔多斯市康巴什区发改委发布《内蒙古自治区碳达峰试点(康巴什区)实施方案》,将大力推广光伏、光热、空气能、风能、储能等新清洁能源在各领域的应用,助力康巴什早日实现碳达峰。方案提出,要加快智能光伏产业创新升级和特色应用,推广“光伏#x2B;”多元化模式,
当地时间5月7日至9日,全球规模最大、影响力最深的新能源行业盛会——2025慕尼黑国际光伏展(IntersolarEurope)在德国慕尼黑举行。上海电气电站集团(下称“电站集团”)携太阳能、氢能、多元储能等全矩阵产品及一站式解决方案重磅亮相,与全球能源行业领袖共探清洁能源技术革新与零碳未来。可复制解
北极星氢能网获悉,近日,由安徽省新能源和节能环保产业推进组工作专班、安徽省生态环境厅主办的“安徽省新能源和节能环保产业中东推介会”在迪拜顺利召开。新能源领域重点企业布诺太阳能、阳光电源、国轩高科、中环新能源、昂科丰、协氢科技、蜂巢能源先后作专题推介。省商务厅,部分省内企业,36家国
电氢协同的价值是通过电能与氢能的深度耦合,构建电为主体、氢为纽带的新型能源体系,促进新能源消纳,支撑电力系统灵活性日益增长的需求,以及对需要进一步深度脱碳的各用能体系的渗透。——国网上海综合能源服务有限公司副总经理张春雁4月23日,由北极星电力网联合北京碳中和学会共同主办的“2025第
4月29日,中国能建天津电建承建的华能重庆两江燃机电厂二期项目4号机组汽机扣盖完成,为顺利交机奠定了坚实基础。项目位于重庆市两江新区水土高新技术产业园两江国家云计算产业园内,是成渝地区双城经济圈碳达峰、碳中和联合行动重大能源项目。本期建设2台H(J)级燃气-蒸汽联合循环调峰纯凝机组,配
当地时间5月7日,备受瞩目的IntersolarEurope2025在德国慕尼黑新国际会展中心盛大启幕。在本次汇聚全球顶尖能源企业的行业盛会上,林洋能源携创新成果惊艳亮相,通过全场景智慧能源解决方案的立体化展示,向世界展现中国企业在能源转型中的技术实力与战略担当。面对欧洲能源转型需求,林洋能源通过技术
北极星储能网获悉,近日,南网储能公司储能科研院20MW/40MWh级钠离子电池储能系统示范工程并网性能测试服务、应对碳关税壁垒的新型储能产品碳足迹监测溯源技术及碳抵消策略研究招标公告发布,(项目编号:CG0200022002032266)。本招标项目南网储能公司储能科研院20MW/40MWh级钠离子电池储能系统示范工
5月8日,在2025年德国慕尼黑智慧能源展览会(ThesmarterEEurope)期间,远景科技集团面向全球发布《2025零碳行动报告》(下称《报告》),宣布自2022年起连续第三年实现运营碳中和,并于2024年成功实现100%可再生电力使用,提前一年达成RE100承诺,彰显出其在绿色能源转型领域的卓越领导力与高效执行力
我国碳市场建设的困境与优化路径来源:中能传媒研究院作者:封红丽1沈春雷1姜海东1朱婧1袁甜1朱晔2(1.国网(北京)综合能源规划设计研究院2.上海置信能源综合服务有限公司)碳市场作为应对气候变化的重要政策工具,通过市场机制推动温室气体减排,已成为全球绿色低碳转型的核心手段。近年来,我国碳市
北极星氢能网获悉,5月6日,由陕西化建承建的内蒙古金风绿能化工(兴安盟)有限公司绿氢制50万吨绿色甲醇项目(一期25万吨)气化装置首台转化炉在框架内安装就位,此次1#转化炉的成功吊装,为后续工程打下了坚实的基础。此次吊装的转化炉作为项目汽化装置的重要设备之一,单体重150余吨,安装标高27米
北极星氢能网获悉,5月10日,贵州六盘水氢能示范应用暨美锦华宇煤焦氢二期点火烘炉仪式将在六枝特区盛大举行。届时,西南地区首列氢燃料电池火车头、100辆氢能重卡以及4辆氢能公交车将集体亮相,并陆续投入运营。这些氢能交通工具所使用的氢气,主要源自贵州美锦华宇“煤—焦—氢”综合利用示范项目产
CBC2025第八届中国(国际)生物质能大会议程产业背景当前,我国生物质能产业正迎来重要发展机遇。产业规模持续扩大,大型央企与地方国企的加入为行业注入新活力,推动产业走向规模化、专业化发展。2024年6月24日,国家发展改革委、国家能源局《煤电低碳化改造建设行动方案(2024—2027年)》,其中提到:利
北极星氢能网获悉,5月8日,三峡集团云南能源投资有限公司发布基于绿氢零碳生活圈研究及示范运用项目招标公告,公告显示,该项目位于云南丽江,以丽江金山绿氢零碳智慧工厂为基础,为拓展氢能应用场景为主要目的,通过开发基于绿氢的零碳生活圈,一是开发基于绿氢的零碳数字化智慧文旅小镇,打造“氢能
万物逐绿,春风报喜。在南方五省区,绿色低碳技术加快应用,近零碳建筑焕然一新,绿色发展图景欣欣向荣。今年《政府工作报告》提出,“积极稳妥推进碳达峰碳中和”“建立一批零碳园区、零碳工厂”。近年来,南方电网公司持续提升清洁能源消纳水平和能源利用效率,因地制宜打造近零碳示范区,初步形成评
5月8日,中国能建中电工程所属企业参与设计等工作的陇东—山东±800千伏特高压直流工程竣工投产,标志着我国首个“风光火储一体化”大型综合能源基地外送工程建成投运。该工程年输送电量超360亿千瓦时,其中绿电占比达50%,输送的直流电从甘肃庆阳换流站起,经过915千米的线路运输,抵达位于山东泰安东
5月7日,500千伏梅州抽水蓄能电站二期接入系统工程第一阶段启动成功。本阶段投产的梅蓄二期至承龙开关站单回500千伏线路和梅蓄一期至梅蓄二期联络线作为接入工程的主体部分,将为梅蓄二期早日并网投产提供充足的电源支撑,畅通向粤港澳大湾区能源输送的“电源动脉”。据介绍,项目新建线路长度2.17千米
日前,内蒙古自治区碳达峰试点(康巴什区)实施方案发布。根据方案,通过3年创建,达到以下要求:确保康巴什区率先实现碳达峰目标,2023年康巴什区绿色低碳发展取得明显成效,碳排放增长趋势减缓;到2025年康巴什区单位GDP能耗下降率、单位GDP碳排放下降率均超额完成市政府下达目标任务,先行先试推进
5月8日,陇东至山东±800千伏特高压直流工程竣工投产大会举行。甘肃省委书记、省人大常委会主任胡昌升,山东省委书记、省人大常委会主任林武出席;甘肃省委副书记、省长任振鹤,山东省委副书记、省长周乃翔,国家电网公司董事长、党组书记张智刚,中国华能集团有限公司董事长、党组书记温枢刚讲话;国
我国提出碳达峰碳中和目标,不仅是对全球的庄严承诺,更是顺应时代潮流的战略选择。这标志着绿色低碳的现代化路径正在拓宽。实现“双碳”目标挑战巨大。我国碳排放总量大,产业结构偏重、能源结构以煤为主,而且留给我们实现碳中和的时间远少于发达国家。但是,这也为我国提供了发展新技术、推动高质量
构建新型电力系统的重要任务对煤电提出了“新一代煤电升级行动”的新要求,煤电技术正加速向“清洁低碳、高效调节、快速变负荷、启停调峰”方向转型。“新一代煤电”一方面要求煤电机组高效调节能力进一步提升,更好地发挥煤电的电力供应保障作用,促进新能源消纳;另一方面要求煤电探索零碳或低碳燃料
4月21日,国家能源集团召开2025年一季度工作会暨提质增效动员部署会,这也是邹磊履新后召开的第一个周期性工作会议。此次会议指出,国家能源集团要实现从“大而全”到“强而优”的转变,这也是国家能源集团重组7年半来对自身的一次重大审视和战略转向。重组巨擘诞生:从“合并”到“第一”的跨越2017年
4月30日7时10分,华能正宁电厂2台100万千瓦调峰煤电项目2号机组圆满完成168小时连续满负荷试运行考核。试运期间各项性能、环保指标达到或优于设计值,至此,项目两台机组实现全容量投入商业运营。华能正宁电厂2台100万千瓦调峰煤电项目,是华能陇东多能互补综合能源基地的重要组成部分,是“陇电入鲁”
4月27日,吉林油田举办新闻发布会,吉林石化—吉林油田二氧化碳管道工程(一期)27日在吉林省松原市启动。该管道设计总长约400公里,建成后预计每年可在地下封存二氧化碳量超过400万吨。据介绍,该管道是目前中国运输距离最长、管径最粗、压力最高、规模最大的二氧化碳管道,采用超临界/密相(一种特殊的
在能源电力供需格局持续演变的新形势下,电力行业的高质量发展面临诸多挑战。作为我国“西电东送”的主力军,云南省秉持资源经济与能源产业“一盘棋”的战略布局,加速推进能源全产业链建设,为绿色能源强省建设提供支撑。双轮驱动破解“三缺”矛盾记者在云南多地调研时发现,缺电、弃电和调节能力不足
北极星电力网获悉,近日,新疆油田公司2×660兆瓦超超临界煤电项目主厂房混凝土开始浇筑,标志着新疆油田首个也是目前中国石油最大在建煤电工程进入实质性建设阶段。据悉,该项目位于克拉玛依市白碱滩区,是中国石油最大的“新能源+煤电+CCUS”一体化项目,总体规模为“400万千瓦新能源+2×660兆瓦超超
4月21日至23日,第二十六届中国环博会在上海新国际博览中心隆重举办。作为亚洲环保领域的旗舰盛会,本届展会规模空前,吸引了来自22个国家和地区的2000多家企业参展。同兴科技及子公司北京方信立华携多项核心技术和产品亮相展会,包括烟气治理环保工程总承包解决方案、低温SCR脱硝催化剂、CCUS(二氧化
您了解“双碳吗”?,关于“双碳”名词有很多很多,看看您见过的还有哪些,欢迎评论留言,共同探讨新名词。一、政策与目标类1.双碳碳达峰指国家或地区在某一年度二氧化碳排放量达到历史最高值后逐步下降,标志着经济增长与碳排放脱钩。中国承诺在2030年前实现碳达峰。碳中和指通过植树造林、碳捕集等技
4月21日,邯郸市生态环境局关于印发《2025年全市生态环境工作要点》的通知,通知指出,扎实推进塑料污染治理,积极推进退役风电叶片、光伏组件等新型废弃物循环利用。原文如下:邯环〔2025〕1号邯郸市生态环境局关于印发《2025年全市生态环境工作要点》的通知各县(市、区)分局,局机关各科室、局属各
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!