登录注册
请使用微信扫一扫
关注公众号完成登录
1 基于二维纳米材料的功能膜制备
1.1 共混法
共混法改性具有技术成熟、操作简便、膜材料稳定性较好的优势。共混法是指在膜材料的前体溶液中均匀混入二维纳米材料,使溶液与二维纳米材料均匀混合,然后通过相转化法、气相聚合法、溶胶凝胶法等方法使前体溶液形成连续的膜,以制备出均匀分散的二维纳米材料的复合膜材料。相比于零维、一维以及三维材料,二维纳米材料在共混膜中的堆叠和相互接触能够更有效疏导水分子的流动、强化分离,同时创造出供载流子高速迁移的通路。但是同其他纳米材料在共混膜中应用的难点一样,二维纳米材料包埋于分离层中,容易对分离层性能产生影响,这种影响既可能起到强化分离性能的效果,但也有可能会使膜产生缺陷,因此纳米材料与膜材料其他组分的相容性至关重要。
很多研究在采用共混法制备功能膜时,会使用活性高分子聚合物作为添加剂,例如,在制备导电膜时添加聚苯胺(PANI)、聚吡咯(PPy)、氨基蒽醌聚合物(PDAAQ)等导电高分子以增强导电性。以相转化法为例,将导电高分子聚合物、二维纳米材料作为掺杂剂与铸膜液充分混合,然后通过正常的相转化流程就能制备得到二维纳米材料/导电高分子聚合物掺杂的复合膜材料。除了相转化法,气相聚合法同样可以被用来制备二维纳米材料共混膜。以一种聚吡咯(PPy)/Gr(或GO)导电复合膜为例,气相聚合法首先是将基膜浸入Gr(或GO)分散液,超声使纳米材料与基膜充分接触,取出并适度干燥后在基膜表面喷涂足量的过二硫酸铵溶液,最后将其置于吡咯(Py)蒸气中。由于过二硫酸铵的作用,Py单体在Gr(或GO)表面原位发生聚合反应,制得PPy/Gr或PPy/GO膜,这类膜在电化学膜生物反应器(EMBR)中展现出良好的导电性和抗污染效果。
以上讨论的均为有机复合膜,二维纳米材料同样可以被复合到无机膜的分离层中,制备得到二维纳米材料掺杂的无机功能膜材料。举例来讲,溶胶凝胶法是无机膜的一种常见制备方法,将热稳定的二维纳米片分散到无机膜的前体溶胶中,将溶胶涂覆在基底(如ITO导电玻璃表面)上,并通过热处理等流程可以制得二维纳米材料掺杂的无机导电膜。
1.2 自组装
尽管共混法具有许多优势,但是其仍有难以克服的弊端,如纳米材料容易导致膜材料产生缺陷,而膜内的有机组分易遮蔽二维纳米材料的活性位点。因此近年基于二维纳米材料的新型膜制备技术逐渐发展为以真空辅助抽滤(vacuum-assisted filtration,VAF)或压力辅助过滤(pressure-assisted filtration,PAF)为核心的自组装技术[图2(a)],以形成规整的水通道,同时也暴露出了更多的活性位点。VAF技术是指基膜的一侧为二维纳米材料分散液,而在另一侧施加负压,使分散液在压力差驱动下流过基膜,而二维纳米材料在基膜表面逐渐堆积,并依靠纳米片间的相互作用力(范德华力、氢键作用及静电作用等)自组装成膜。PAF技术与VAF的区别在于PAF技术是在分散液一侧施加正压,将分散液压过基膜,而非在分散液对侧施加负压。一些研究表明PAF技术对于一些材料更容易获得有序堆叠的膜材料,但目前基于PAF技术的功能膜研究相比VAF仍较少,实际研究中应该在实验比较后确定使用VAF技术或PAF技术。
在高压功能膜材料制备中,直接将二维纳米材料通过VAF或PAF技术自组装,可以制备得到片层间距仅为数埃的高压膜。这类新型高压膜以规整的层间隙作为亚纳米级水通道,可以同时实现高选择性和高通量,突破传统有机膜的trade-off效应。同时,通过电压响应、光响应等外部作用进行亚纳米级调控,用于催化或传感监测。
为了进一步提升自组装功能膜的稳定性,在VAF或PAF技术的同时或之后,可以采用高分子聚合物对纳米片层进行交联,如戊二醛、聚多巴胺(PDA)、PANI等[图2(b)]。但需要注意的是,交联剂的使用必然会带来与共混法相同的弊端,会改变自组装功能膜的选择性和渗透性。因此要根据二维纳米材料的性质选择合适的交联剂,同时对各组分比例进行合理调控,避免或降低交联对功能膜选择性、渗透性的不利影响。如Thakur等采用戊二醛作为交联剂,在其GO纳米片分散液中实现GO纳米片在激光诱导石墨烯(LIG)层上的组装和交联。而在共混法中常用的导电高分子PANI同样可以作为自组装技术中的交联剂,已有文献报道它可以混合到rGO或Gr纳米片分散液中,实现二维纳米材料的组装和交联,且可以通过后续的热处理进一步强化膜的稳定性。同时,一些研究表明,PANI的使用可以减缓碳材料在电化学过程中的腐蚀。除了将交联剂混合在二维纳米材料分散液中外,还可以将组装步骤与交联步骤分离。如Hu等在制得MoO3-x纳米片自组装膜后,经过适当干燥,将膜浸泡于PANI溶液中一定时间,洗去游离的PANI即可获得PANI交联的MoO3-x纳米片自组装膜。
研究人员还采用零维、一维或其他二维纳米材料插入主体二维纳米材料的层间,以应对长时间操作后的溶胀问题或提高膜的渗透性和强化(或赋予)膜材料功能性[图2(c)]。具体方法包括先将掺杂材料负载在主体二维纳米材料表面,然后进行自组装;或将掺杂材料与主体二维纳米材料分散液混合后,通过自组装技术插层到主体材料层间。自组装功能膜采用的零维纳米材料包括TiO2纳米颗粒、Co3O4纳米颗粒、Ag纳米颗粒等;采用的一维纳米材料包括碳纳米管、坡缕石(PG)、g-C3N4纳米管、MOF纳米棒、TiO2纳米管、纳米棒或纳米线等;而二维纳米材料包括g-C3N4纳米片、改性GO纳米片等。
1.3 其他功能膜制备方法
在一些研究中,研究人员还开发出了一些其他的新型功能膜制备方法。如Chen等采用MoS2纳米片与Fe(OH)3纳米颗粒混合,通过VAF方法自组装之后,再用盐酸将Fe(OH)3溶解,得到层间距更大的MoS2催化膜。而Lan等采用NaOH热处理和透析技术将二维g-C3N4纳米片制备成溶胶,再与含铁多金属氧酸盐(Fe POMs)混合,通过VAF技术在聚碳酸酯膜上依靠g-C3N4分子间氢键作用及 g-C3N4与Fe POMs间作用力实现自组装,原位形成纳米颗粒/二维纳米材料光催化膜。Yu等则采用溶剂热诱导自组装的方法制备了具有层状结构的rGO-TiO2膜。Werner等通过化学气相沉积(CVD)方法在镍基中空纤维膜表面负载了Gr层。
2 基于二维纳米材料的功能膜分类与设计原则
2.1 导电膜
基于二维纳米材料的导电膜是一种通过复合或直接由导电二维纳米材料构筑而成具有导电性的功能膜,其主要功能包括电化学氧化还原、静电排斥作用、电强化吸附等,在抗污染、脱盐等方面具有较强的应用潜力。二维纳米材料具有高比表面积、活性位点丰富等优势,且导电性能往往较块状材料更强,其独特的片层结构为载流子的快速传输提供通路,因此可以高效地进行导电功能膜的构筑。
在设计膜材料时,二维纳米材料的电导率以及还原、氧化能力是需要着重考虑的重要指标,因为它们对导电膜应用效能具有显著影响。导电性决定了此类材料是否适合应用到导电膜中,还原能力反映该材料直接电子传递还原或产生活性氢的间接还原能力,而氧化能力反映了该材料通过直接电子传递或产生氧化性物种氧化的能力。在一些能耗要求严格、以污染物去除为主要目的(不是以膜污染控制为主导目标)情况下,不希望体系内发生析氢反应(或析氧反应),而只发生目标污染物的还原反应(或氧化反应);而在以抗污染为主要目标等情况下,适当程度的析氢(析氧)反应则有利于膜污染控制。因此功能膜的实际析氢(析氧)过电位也是需要考虑的重要因素。此外,需要注意的是,许多二维纳米材料并不适合作为阳极材料,如石墨烯类材料的C元素很容易氧化;MXene中低价的Ti元素易被氧化为TiO2,这些制备成本较高的二维纳米材料并不经济。
2.2 光催化膜
光催化膜是一种利用具有光催化性能半导体材料的功能膜,在一定波长范围内的光照条件下产生活性氧物种(ROS)实现自清洁或污染物降解等功能。在膜发生污染后,采用一定波长的光照射实现膜通量的恢复,即膜的自清洁;或在操作过程中持续提供光源照射膜表面,发挥抗污染或强化污染物降解的功能。二维纳米材料在光催化膜中能够作为光催化活性组分,如g-C3N4纳米片具有丰富的活性位点、较大的比表面积和高载流子迁移率,在功能膜中展现出了良好的光催化活性。而另一些材料(如rGO)可以与光催化活性组分复合,起到降低能带间隙(band gap)等作用,以强化光催化膜的性能。
在设计光催化膜时,需要考虑光催化膜在水处理领域中的实际应用场景及能耗要求,在紫外光照射下许多复合膜的有机组分易老化而导致膜的使用寿命缩短,因此理想的光催化膜应该具有较低的能带间隙,能够高效地利用可见光。此外,光催化膜内各组分的透光性也是重要的考虑因素,如果膜的透光性能差,则会阻碍内层光催化剂对光线的利用。因此光催化膜往往采用具有高透光率的材料,如石墨烯类材料。
2.3 其他功能膜
在设计光催化膜时,需要考虑光催化膜在水处理领域中的实际应用场景及能耗要求,在紫外光照射下许多复合膜的有机组分易老化而导致膜的使用寿命缩短,因此理想的光催化膜应该具有较低的能带间隙,能够高效地利用可见光。此外,光催化膜内各组分的透光性也是重要的考虑因素,如果膜的透光性能差,则会阻碍内层光催化剂对光线的利用。因此光催化膜往往采用具有高透光率的材料,如石墨烯类材料。
3 基于二维纳米材料的功能膜在水处理中的应用
3.1 抗污染
传统膜材料的抗污染性能优化主要是通过对膜材料表面或孔道内亲疏水性、zeta电位以及粗糙度的调控实现的,而功能膜材料(以导电膜为主)的抗污染性能主要依靠静电排斥作用、电化学氧化还原以及在较大电压时的电致气泡对膜表面的冲刷作用使污染物在膜表面、孔内沉积速率降低,从而降低清洗频率,延长膜的使用寿命。图3总结了导电膜作为阴极或阳极时可能发生的电化学过程,并给出了几个典型反应的标准电极电势。在中性条件下,许多有机污染物、微生物表面均带负电,因此抗污染功能膜材料往往被用作阴极材料。此时,功能膜整体带负电,静电排斥发挥主要作用,降低微生物和有机物在膜面附着的倾向。且在电势低于一定值时,可通过将水中的溶解氧在功能膜上还原为双氧水(H2O2),进而氧化膜表面或孔内的部分有机污染物或微生物。而当电势低于析氢电位时,氢气的产生也可能会起到冲刷膜表面的作用,进一步强化抗污染能力。当功能膜被用作阳极材料时,主要依靠电极氧化能力直接电子传递或产生ROS(如·OH)氧化污染物或微生物,以及在高电势时析氧反应对膜面的冲刷作用。表1总结了近年来基于二维纳米材料的功能膜在抗污染中的研究进展。
(标准电极电势数据来源为《电化学方法原理与应用》;*表示相应电势与模型污染物、电极性质、溶液环境高度相关或缺乏相关文献支持)
Thakur等制备了一种GO/激光诱导石墨烯(LIG)复合导电超滤膜,GO纳米片的使用显著提升了LIG膜对BSA(最高69%)和微生物截留效果(由20%提升到99.9%),在无电压时复合膜的抗生物污染性能较普通有机超滤膜更好,功能膜作为阳极时(槽电压为3V)其抗生物污染性能进一步提升,较普通超滤膜通量提升11%。Shakeri等制备了一种Gr自组装/导电高分子PANI交联的导电正渗透膜作为阳极(槽电压为2V),功能膜抗污染能力在电氧化、电致气泡对表面及孔内的冲刷以及静电排斥等作用下显著提升。
在膜生物反应器(MBR)以及厌氧膜生物反应器(AnMBR)中,膜材料直接和体系内高浓度的微生物、有机物接触,因此膜污染的有效控制是MBR和AnMBR的技术关键之一。Liu等在电化学耦合膜生物反应器(EMBR)中采用了一种PDAAQ/rGO纳米掺杂的PVDF膜作为阴极,在1V/cm的外加电场下显示出良好的氧还原(ORR)性能,30min电解后体系内H2O2积累量达到8.84mg/L。这种膜依靠静电排斥作用和原位电还原溶解氧生成的H2O2,相比普通PVDF膜污染速率降低约63.5%。Liu等采用Gr/PPy改性导电膜作为EMBR阴极,在1V/cm的条件下过滤酵母菌悬浮液,改性膜可以有效抑制膜污染。Jiang等则采用这种GO/PPy导电膜在EMBR连续流运行中耦合群体感应淬灭细菌,实现了抗污染效果进一步强化。Werner等采用表面沉积Gr的中空纤维膜作为阴极置于厌氧电化学膜生物反应器中,在槽电压为0.7V和0.9V下都呈现出良好的抗污染效果,特别是在0.9V时,由于析氢反应和更强的电流强化了抗生物污染能力。
基于导电膜材料的研究,Alam等进一步采用电化学石英晶体微天平(EQCM-D)技术对GO、rGO、MoS2三类纳米片的电化学抗污染机理进行了研究。首先在负电势(-0.5VAg/AgCl)条件下,带负电的BSA在GO-PPy、rGO-PPy和MoS2-PPy表面 沉积速度降低了50%~75%;而在无电势条件下,rGO-PPy和MoS2-PPy比纯PPy表面沉积速率小90%以上;在较低的正电势(+0.5VAg/AgCl)条件下,三类材料均没有显著抗污染效果;而当正电势提高到一定程度(+0.74VAg/AgCl)的条件下,由于氧化性物种的产生,BSA发生降解并从表面被释放出来。
3.2 膜通量恢复
膜通量恢复主要是指膜发生污染后,在外界能量输入条件下使膜通量恢复的自清洁过程。导电膜主要依靠电氧化和电致气泡实现膜通量的恢复;而光催化膜主要依靠可见光或紫外光照射,产生ROS降解表面和孔内沉积的有机物,实现膜通量的恢复。表2列举了近年来基于二维纳米材料的新型功能膜在膜通量恢复中的研究现状。
Karkooti等采用PAF法在PES基底上制备了PANI掺杂的rGO导电膜,分别将导电膜作为阳极或阴极在海藻酸钠污染实验中发现膜污染速率降低了2%~32%,并在清洗实验(导电膜作为阳极)中发现其通量恢复率最高可达到97%(9V)。Subtil等则采用(PANI/rGO)掺杂的PES膜,比较了酸樟脑磺酸(HCSA)掺杂PANI和十二烷基苯磺酸(DBSA)掺杂PANI对膜性能的影响。在膜清洗实验(槽电压为5V,持续10min)中发现PANI(HCSA)-rGO掺杂膜材料的通量恢复率(FRR)达81.3%,PANI(DBSA)-rGO的通量恢复率为60.9%,而普通PES膜(超纯水清洗)为21.8%。
在光催化膜领域,TiO2作为常用的高性能光 催化纳米材料,可以与透光性良好的石墨烯类材 料实现高效耦合。Yu等制备的2D-2D rGO-TiO2自组装膜对染料的截留率>97.3%,过滤性能约9.36L/(m2·h·bar),且rGO的引入使能带间隙由纯TiO2膜的3.24eV降低到了2.77eV,可以利用可见光下实现膜的自清洁/通量恢复。Liu等采用TiO2纳米棒插层的GO自组装纳滤膜对常见染料的截留率大于99%,在可见光照射下通量恢复率大于83%。
g-C3N4是一种可以高效利用可见光的光催化剂,其本身的二维纳米结构可以实现与石墨烯类 材料的层层自组装。Liu等采用TiO2纳米颗粒@ g-C3N4的异质纳米片与GO纳米片形成自组装油水分离膜,过滤性能由纯GO膜的101L/(m2·h·bar)提升到4536L/(m2·h·bar),且10轮过滤实验后,可见光自清洁后通量恢复率仍高于95%。Cai等采用坡缕石插层的GO/PG/CN@BOC二维自组装异质膜用于油水分离,其具有稳定的层间距和可见光催化自清洁功能,过滤性能由纯GO膜的100L/(m2·h·bar)提升到4600L/(m2·h·bar),可见光自清洁后通量恢复率高于95%。Lan等采用一种由g-C3N4溶胶制备的g-C3N4/Fe-POMs自组装膜,具有稳定的过滤性能[通量为29L/(m2·h·bar)],且对3nm分子有87%的截留率。依靠g-C3N4和Fe-POMs的催化性能,该膜分别在模拟日光条件下展现了良好的光催化和光芬顿催化效果,5轮试验后通量恢复率仍能接近100%,且在连续流实验(提供光照并投加H2O2)中能稳定运行12h以上。
3.3 强化污染物去除
二维纳米材料的引入也为功能膜强化污染物 降解提供了新的可能性,表3对近年相关研究现状进行了总结。如Chen等采用1T相MoS2自组装膜高效活化过一硫酸盐(PMS),并将产生的自由基限域在纳米孔道内使其与污染物高效接触,极大地降低了自由基淬灭的问题,在维持高过滤性能[154L/(m2·h·bar)]和短停留时间(60.4ms)条件下实现BPA降解效率高于90%。Wang等采用MoS2纳米片分别用分散液和膜两种形式处理重金属(Ag+)溶液,结果发现MoS2通过氧化还原反应将Ag+还原为Ag,并释放出无害的钼酸盐和硫物种,去除效果高达4000mg Ag/g MoS2(其中吸附作用贡献小于20%)。并且,MoS2膜去除重金属的能力(mg Ag/g MoS2)并没有随膜厚度增加而下降,表明在氧化还原过程中膜内层会发生氧化而使表面保持活性。Ren等采用Gr/TiO2无机复合膜实现了罗丹明(RhB)的过滤和同步光电催化降解,在模拟日光下300min对RhB的去除率达到87.6%,而在光和电场共同作用下30min去除率达到97.8%。目前,基于二维纳米材料的导电膜,更多地侧重于抗污染,而非强化污染物降解。但近年已有许多文章报道了应用其他纳米材料的导电膜实现污染物的高效降解,因此未来基于二维纳米材料的导电膜可能会在强化污染物去除应用中得到更多的研究和关注。
基于光催化膜强化污染物降解技术不同于膜污染发生之后的通量恢复,后者可以将膜从膜池或组件中取出并应用光照以恢复通量,而前者则需要在膜过滤的同时对膜表面进行光照。但这类应用存在一个问题,光在穿透待处理废水时势必会被散射或反射,到达膜表面的光十分有限,而如果需要采用紫外光源,则更是会导致运行能耗大幅提升。所以,这类应用需要能够对可见光响应,且处理对象往往被局限于色度较低的废水。
Yu等采用rGO/PDA/TiO2纳米线或rGO/PDA/TiO2纳米颗粒自组装膜对染料和油污进行处理,该膜具有较好的抗污染能力和污染物降解效果,且采用纳米线的膜比采用纳米颗粒的膜更均匀且通量更高。Bao等采用一种TiO2/Co3O4/GO自组装膜,具有在水下显示超疏油性,而在油中显示超亲水性的特点,且在模拟日光下具有光催化降解污染物的能力。Liu等采用一种Ag纳米颗粒/GO/TNTs(钛纳米管)自组装膜,耦合膜过滤和可见光催化污染物降解,使膜通量能够稳定在较高水平。
Wei等采用C3N4纳米管/rGO复合膜在可见 光下实现较高通量的过滤和RhB的同步去除 (>98%)。Shi等采用一种具有3D异质结构的CNTs/C3N4/GO层层自组装膜,在可见光辅助的长期试验中,实现了对RhB(98.31%)和盐酸四环素(TC)(84.81%)的高效去除。在TiO2和g-C3N4这两类常用光催化材料之外,Xie等研究了一种GO/MIL-88A(Fe)自组装膜,MIL-88A(Fe) MOF材料起到调控2D纳米孔道和光芬顿催化的功能,在可见光和投加H2O2的条件下对有机染料亚甲基蓝(MB,98.81%)和双酚A(97.27%)都取得了很高的降解效率。
3.4 调控盐截留
基于二维纳米材料的功能膜可以利用电压、电势梯度、光照、温度等调控膜对盐离子的截留性能。如Ren等利用一种MXene膜对电压的响应,使得0.4V下提高离子通过速率,而-0.6V下抑制离子传输(离子透过率接近为0)。Wang等更进一步使用MXene膜对电压响应,实现1nm以下纳米流道对离子的截留。这种电压门效应是由于纳米片在负电势时,纳米片表面会静电吸引阳离子而排斥阴离子,导致纳米孔道内的双电层保留了高浓度的阳离子,进而对溶液中离子实现高选择性地截留;而在正电势时,纳米孔道内的阳离子由于水合体积远小于阴离子,因此仍然能进入孔道内,并与带正电的MXene纳米片相互排斥导致孔道扩大。Wen等采用一种表面带负电的GO/表面带正电的改性GO自组装异质膜,使膜片由一端到另一端形成正电/中性/负电的电势梯度,而水流和离子均平行于膜片流动。在电场辅助下,去离子水从中性区流出,体系NaCl截留率可达97.0%,过滤性能可达1529L/(m2·h·bar)。Hu等采用rGO-CNT三维导电纳滤膜,作为负极时NaCl抑制率为71%,是无外加电势时的3倍。Sun等对比了GO和不同还原程度的rGO膜在电场辅助下的盐截留效率变化,结果表明GO膜作为阴极的盐截留效率在1V条件下仅提升0.62%,中等还原程度的rGO膜提升21.83%,高还原程度的rGO膜提升15.45%,而这种现象可能是由于随着还原程度增加,褶皱(粗糙度)和表面电荷密度变化趋势相反。
3.5 监测传感
二维纳米材料具有极高的比表面积和良好的导电性,因此基于二维纳米材料的导电膜可以被用作电化学传感器。Kong等利用这类渔业废弃物贝壳制成了二维碳纳米网,并堆叠成无机导电膜,在实现高通量过滤的同时,实现了电化学传感和应变传感的功能。Hu等采用二维MoO3-x纳米片自组装膜,并采用PANI和质子酸掺杂、渗透将导电性进一步提高了1797倍和354倍,可用作重金属铅离子传感器,且在暗、光条件下展示出了不同的灵敏度。在功能膜中,二维纳米材料构筑形成的纳米孔道尺寸可调,通过精细的设计和调控,在一定推动力作用下使溶液中部分组分进入二维纳米孔道,功能膜可以实现高灵敏度、强特异性的监测传感。
4 结语
基于二维纳米材料的新型功能膜材料具有可调控的分离性能,可以实现trade-off效应的突破。同时,二维纳米材料以其独特的片层结构、催化性能以及可修饰性,赋予膜材料新的可能性,在新型功能膜的制备和应用中展现出了巨大的潜力,对拓宽膜的功能和应用具有重要促进作用。未来,二维纳米材料的新型功能膜材料在以下几个方面具有良好的发展前景:①限域催化,以二维纳米材料堆叠形成的规整二维孔道可以作为负载芬顿/光/电催化剂的基底或二维纳米材料本身作为催化剂;②盐分离,以二维纳米孔道的电压门效应或表面电荷的调控强化分离;③监测传感,尺寸可调控且具有高比表面积和传导效率的二维纳米孔道可用于实现灵敏度高、特异性强的电化学监测传感。
为进一步推进二维纳米材料功能膜的发展和应用,未来研究中仍需解决以下科学与技术问题:①基于二维纳米材料的膜制备成本仍较高,因此需要创新、优化制备方法,以降低功能膜制备成本;②功能膜材料水稳定性、抗污染能力需要进一步提升,以延长使用寿命;③传统的宏观传质理论和反应动力学模型可能不再适用于功能膜内的传质-反应耦合过程,因此需要阐明功能膜性能的关键影响因子,发展适用于界面和纳米限域空间内的传质/反应数学模型。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
8月26日,嘉戎技术披露2022年半年度报告,2022年上半年,公司实现营业收入3.62亿元,同比增长25.78%;归属于上市公司股东的净利润4402.35万元,同比下降28.52%;归属于上市公司股东的扣除非经常性损益的净利润3502.61万元,同比下降15.34%;基本每股收益0.45元。公司主营业务为膜分离装备、高性能低温
高盐废水是指总含盐量至少3.5wt%的废水。高盐废水来源广泛、成分复杂,通常含有大量Cl-、SO42-、Na+、Ca2+、Mg2+等可溶性无机盐离子,以及含量不等的重金属离子。其中,火电厂洗煤工艺中产生的脱硫废水就是一种典型的工业高盐废水。因此,高盐废水的处理难度极大,能耗极高,并且处理过程中通常还伴有
盐湖提锂火了!在水务企业2021业绩整体表现不尽人意之时,很多企业开始将目光瞄向新的领域,而盐湖提锂这个站在“最强风口”上的赛道成为了如碧水源、巴安水务、久吾高科等膜分离技术企业的新的选择。那么,龙头企业们纷纷布局的“盐湖提锂”究竟是什么?他们为什么选择了这个赛道?盐湖提锂站上新风口
4月21日,厦门嘉戎技术股份有限公司(股票简称:嘉戎技术)敲钟上市,成功登陆深交所创业板。嘉戎技术本次公开发行股票2,913万股,其中公开发行新股2,913万股,发行价格38.39元/股,新股募集资金11.18亿元,发行后总股本11,649.7080万股。嘉戎技术主要从事膜分离装备、高性能膜组件等产品的研发、生产
4月8日,深交所官网发布《厦门嘉戎技术股份有限公司首次公开发行股票并在创业板上市网上路演公告》。厦门嘉戎技术股份有限公司首次公开发行人民币普通股A股并在创业板上市的申请已经深圳证券交易所创业板上市委员会审议通过,并已经中国证券监督管理委员会同意注册(证监许可[2022]499号)。嘉戎技术是
日前,中国石化联合会就《膜分离耦合法含苯系物废气治理工程技术规范》团体标准进行公开征求意见,详情如下:各有关单位:根据《关于印发2019年第一批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质函[2019]133号),由中国石油和化学工业联合会提出,中国化工环保协会组织制定的《膜
7月6日—7月8日,青岛国际水大会在青岛西海岸新区顺利召开,大会以水资源、水环境、水生态、水安全为四条产业线,涵盖工业与城市污水资源化利用、城市饮用水安全保障、城市水务及智慧水务、海水淡化利用、膜分离技术、水生态修复、垃圾渗滤液处理以及污泥处理等诸多领域。陕西鼎澈膜科技有限公司(以下简称“鼎澈膜”)携最新产品——国产化高性能海水淡化膜参加本次大会,鼎澈膜营销总监王帅就产品特性、公司发展等问题与北极星环保网进行了深入交流。
反渗透膜分离技术是在高于溶液渗透压作用下,利用半透膜拦截水中的盐类、胶体、微生物以及有机物等杂质,实现溶质与溶剂的有效分离。反渗透技术在电厂锅炉补给水处理中有广泛应用,是制备电厂生产所需除盐水的重要工序。补给水系统反渗透回收率通常为75%,排放约25%的浓水。反渗透浓水为经常性排水,水量不容忽视,如果浓水直接外排将造成水资源的浪费。
工业废水零排放脱盐过程不可避免地会产生大量浓盐水。浓盐水的主要成分是无机盐、重金属,也含有预处理、氯化、脱氯和脱盐等过程所用的少量化学品,如阻垢剂、酸和其他反应产物。这种没有被完全处理好且含有毒素的水若未经严格控制就被排放到外界环境中,会造成严重的环境污染问题,因此浓盐水的处理已经是制约工业废水排放的关键技术。
海水淡化利用具有较强公益性,既需要市场积极参与,也需要政府规范引导。《行动计划》着力从明确浓盐水处置要求、健全标准体系、强化激励措施等五方面推动完善政策标准体系。
北极星储能网获悉,星源材质12月24日公告,子公司英诺威(新加坡)有限公司(下称“英诺威”)与珠海冠宇基于面向全球市场及未来更多方面深入合作、共同发展,达成《战略合作协议》。公告显示,双方将在锂电隔膜材料生产、开发、加工、销售等方面,利用各自的优势,进行全面的合作。2025年至2031年期间
北极星氢能网获悉,12月16日,舍弗勒氢能科技(上海)有限公司成立,注册资本1000万欧元,该公司由舍弗勒投资(中国)有限公司100%持股,后者由德国NDUSTRIEWERKSCHAEFFLERINA-INGENIEURDIENSTGMBH100%持股。详细信息:舍弗勒氢能科技(上海)有限公司成立于2024-12-16,注册资本为1000万欧元,经营范
近日,汉丞科技圆满完成超亿元人民币B轮融资,成功引入国际能源及资源公司福德士河(Fortescue)及高瓴创投(GLVentures)的注资。本轮融资由福德士河(Fortescue)与高瓴创投(GLVentures)共同领投。总部位于澳大利亚的福德士河为国际能源及资源公司,对绿氢及相关产业链有广泛布局。本轮融资前,汉丞
11月15日,福斯特发布公告称,公司将功能膜材料业务相关的资产、资质等转让给全资子公司杭州福斯特功能膜材料有限公司(简称“功能膜公司”),功能膜材料相关业务和人员等也一并转移至功能膜公司。福斯特表示,上述业务整合完成后,功能膜公司将独立开展功能膜材料相关业务的研发、生产和销售。
北极星储能网获悉,7月31日,安徽省蚌埠市发展和改革委员会针对民建提出的关于加快布局新能源电池产业助力我市实现碳达峰碳中和的提案做出答复。其中提到,围绕动力电池和储能电池形成包含全部中游产业和下游应用端的高端储能产业链,重点发展锂电池正负极材料、隔膜材料、电解液、电池PACK等产品,关
中国招标投标公共服务平台发布中材科技膜材料(山东)有限公司异味有机废气(VOCs)处理装置设计、供货及安装服务项目中标候选人公示,详情如下:
近日,据浙江台州政府网消息,三门新型光伏功能材料生产基地项目签约,总投资52亿元。该项目由嘉兴晨熹投资管理有限公司投资,达产后形成年产40万吨新型光伏背板用强化功能聚酯薄膜材料的生产能力。
北极星储能网获悉,近日,上海顶皓新材料科技有限公司完成数千万A轮融资,本轮融资由浙创投独家投资,主要用于浙江长兴智能生产基地一期的发展以及二期产能扩张。据了解,顶皓新材成立于2013年,长期致力于锂电池和氢燃料电池高端功能材料的研发、生产制造以及销售。2022年7月,顶皓新材曾获得长兴金控
9月27日,东方盛虹发布公告,全资子公司江苏斯尔邦石化有限公司(简称“斯尔邦”)投资建设的800吨/年POE(聚烯烃弹性体)中试装置成功实现了POE催化剂及全套生产技术完全自主化,项目一次性开车成功。据悉,该装置成功开车标志着斯尔邦成为国内唯一同时具备光伏级EVA(乙烯-醋酸乙烯共聚物)和POE(聚
污水处理行业被认为是耗能大户,以实现2030年碳达峰、2060年碳中和目标为引领,我国污水处理领域绿色低碳转型发展也按下“加速键”,实现“双碳”目标的技术创新成为行业讨论的热点和探索的方向。作为一家技术引领的高科技企业,碧水源始终坚持自主研发之路,其以科技研发为核心竞争力,以膜技术创新为
光伏膜材料是生产光伏组件封装胶膜的核心原材料,近日迎来喜讯。9月7日,全球规模最大的光伏膜材料项目在江苏连云港开工建设。据悉,项目总投资约216亿元,将建设三套光伏膜材料装置,一套高性能工程塑料装置和一套高端聚烯烃装置。目前,我国光伏膜材料进口率超过60%,项目建成后,光伏膜材料年产能将
污水处理行业被认为是耗能大户,以实现2030年碳达峰、2060年碳中和目标为引领,我国污水处理领域绿色低碳转型发展也按下“加速键”,实现“双碳”目标的技术创新成为行业讨论的热点和探索的方向。作为一家技术引领的高科技企业,碧水源始终坚持自主研发之路,其以科技研发为核心竞争力,以膜技术创新为
嘉戎技术公告,公司使用募集资金3000万元向全资子公司优尼索进行增资,用于实施“DTRO膜组件产能扩充及特种分离膜组件产业化项目”。本次增资完成后,优尼索的注册资本将由人民币1,000万元增加至人民币4,000万元,仍为公司的全资子公司。本次使用募集资金对优尼索进行增资,是基于公司募集资金使用计划
光催化分离膜将膜分离与光催化结合在同一处理单元中,可发挥膜分离作用,同时也可以利用光催化剂高效降解水中的有毒有害污染物,提高膜的抗污染性能和水处理效率。因此是水处理领域的研究热点,并显示出巨大的应用潜力。本文综述了基于二氧化钛(TiO2)、氧化锌(ZnO)、石墨相氮化碳(g-C3N4)和氧化钨(WO3)四种常用催化剂的光催化分离膜的研究概况,重点对光催化分离膜的制备方法和性能进行了总结,光催化分离膜具有良好的发展前景,制备高效、稳定的可见光响应光催化分离膜是未来的发展趋势。
近日,中国科学院大连化学物理研究所无机膜与催化新材料研究组研究员杨维慎、副研究员彭媛团队在纯相共价有机框架气体分离膜研究方面取得进展,以共价有机框架纳米片为膜构筑基元,诱发错排缩孔效应,实现了二氧化碳的高效分离。
进入“十四五”后,“资源化利用”成为污水处理行业热议词汇,其缘由可从《“十四五”城镇污水处理及资源化利用发展规划》中窥知一二。最新规划提到,到2025年,加强再生利用设施建设,推进污水资源化利用。这一规划为“十四五”时期城镇污水收集处理、资源化利用和污泥无害化资源化处理处置设施建设与运行提出了清晰的时间表、任务书和路线图。
中空纤维膜技术是解决当前全球面临的水资源与能源危机、环境污染等重大问题的共性关键技术之一,也是节能减排、清洁生产、系统效率与产品品质提升等实现高质量发展的重要技术支撑。本文系统分析了中空纤维膜发展的战略需求、现状与趋势,指出了我国中空纤维膜技术在各个细分领域中存在的主要问题和未来创新重点,明确了2025年和2030年的发展目标。研究提出中空纤维超/微滤膜、高品质疏水膜、新膜技术、废旧膜回收4个方面的重点任务与要求,并从人才管理、创新投入、行业规范、国际合作4个方面给出了保障措施建议,以期为我国中空纤维膜产业高质量发展提供参考。
鲁西化工集团股份有限公司化水车间的反渗透系统日处理水量14万吨,废水近零排放车间每天需要处理厂区的生化废水、循环排污水、化水车间浓盐水达3万吨。整个项目通过使用反渗透和纳滤膜高新技术,实现了杂盐的资源化循环利用,推动了水生态环境的持续改善。中国的工业化进程为分离膜行业提供了很多应用
6月26日,在证监会官网,来自江苏盐城海普润科技股份有限公司(下称“海普润”)披露最新的首次公开发行股票招股说明书。这家公司成立于2016年5月17日,仅仅历经4年时光就想登陆中国资本的最高舞台。可以说这个速度,在国内说是火速了。海普润作为高分子膜材料研发商,从事水处理分离膜的研发、生产和销
【背景介绍】水资源短缺是当今社会面临的重要资源问题之一,传统的饮用水制备策略都是基于地下水,水循环以及自然储备,但这远远不够。相比之下,海水淡化则可以很好的解决以上问题。目前主要海水淡化技术为热驱动蒸馏,但此法耗能高且可持续性差。膜分离技术由于耗能低、效率高,逐渐取代了传统的海水
近日,东华大学先进低维材料中心特聘研究员冯训达在低维材料结构调控和应用领域取得系列重要进展,相关成果发表以《具有连续水通道、抗污染的自组装纳滤膜》《Precisenanofiltrationinafouling-resistantself-assembledmembranewithwater-continuoustransportpathways》(Sci.Adv.2019,5,eaav9308)为
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!