登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
在食品加工过程中常需使用含盐溶液或干盐来获得最终产品;随着人们生活水平的提高和需求增大,海水养殖业快速发展,并产生了大量含盐养殖废水;工厂在满足社会运转的同时,会出现大量的脱硫、电渗析浓缩液等废水;这些源头产生的大量含盐废水亟须处理。
当废水溶解盐质量浓度大于35 g/L时可称为高盐废水,高盐不会直接给生态环境造成严重的危害,但含有大量有机物和氮源(主要以氨氮形式存在)的高盐废水,比如榨菜废水、养殖废水和脱硫脱硝废水,若不进行有效处理而直接排入河道或海洋中,会在水体中大量富集,进而出现水体富营养化,严重时引起水体黑臭现象。
对于高盐氨氮废水,目前的处理方式主要有物理化学法和生物法,综合比较之下,生物法在其运行投资费用和环保方面都优于物理化学法,因而得到人们的重视。
在生物法处理高盐废水中有机物和氨氮时,提升盐度后有机物仍然具有较高的去除率,而氨氮去除率受抑制程度明显,故本研究主要对其中难降解的氨氮进行讨论。
目前处理高盐废水中的氨氮所用到的生物法主要有活性污泥法、颗粒污泥法、生物膜法和复合工艺等,这些方法在处理高盐氨氮废水时都有其适用的范围和局限性,笔者将对这些方法进行全面的讨论,概述各种工艺的优缺点,探讨高盐环境下生物法降解氨氮的解决思路,以期为该类废水的处理提供参考。
01 不同生物法处理高盐氨氮废水时的表现
不同工艺处理高盐废水中氨氮时的表现见表 1。
1.1 活性污泥法
活性污泥法及其改进工艺是处理市政污水最广泛使用的方法,但是悬浮生长的污泥结构暴露在大量高盐环境下时,会抑制污泥中微生物活性,导致对氨氮的去除急剧下降甚至微生物死亡。
表1中工艺1~5为传统活性污泥法处理高盐氨氮废水时的表现,可以看出当废水中盐度范围在10~15 g/L以下时,使用传统的活性污泥法处理氨氮是可行的,但超过20 g/L时,处理效果急剧下降。
工艺6~8为厌氧氨氧化(anaerobic ammonium oxidation,Anammox)活性污泥法,虽然Anammox在低C/N下的废水中有利于成为优势菌种,很适合处理含盐量低于30 g/L的低C/N工业废水,但可以看出当氨氮废水中盐度超过30 g/L时,处理效果急剧下降。所以活性污泥法不适用于处理高盐氨氮废水。
1.2 颗粒污泥法与生物膜法
由活性污泥颗粒化形成的好氧颗粒污泥(AGC,表1中工艺11~15),由于其从外层到内层溶解氧浓度呈梯度变化,使颗粒同时具有了好氧、缺氧和厌氧区,这种特殊结构提升了生物多样性,增加了污泥的脱氮途径,增强脱氮效果,从而缓解了高盐浓度下的抑制作用。
L. Quartaroli等研究高盐环境下脱氮性能良好的好氧颗粒污泥内部结构,发现其中包括异养硝化菌、好氧反硝化菌、厌氧氨氧化菌和传统的硝化与反硝化菌,这说明好氧颗粒污泥脱氮是由多种途径组成。但是超过50 g/L左右盐度后,好氧颗粒污泥会不可避免地发生颗粒破碎、解体等现象,影响去除效率,导致出水水质恶化。
常见生物转盘、接触氧化、生物滤池等生物膜法,其本质是将活性污泥固定在特定的载体上避免被冲刷到反应器以外,这一附着生长的特性可以在吸附降解废水中有机污染物的同时使大部分微生物群落不直接暴露在有毒、有害环境中,获得了一定的抗毒害能力。如表 1中工艺16~20,在面对含有50 g/L左右以下溶解盐的氨氮废水时,对氨氮的降解能力表现良好。
1.3 复合工艺
把膜生物反应器(membrane bioreactor,MBR)应用到含盐氨氮废水中,可以使其耐盐能力远超活性污泥法,如表 1中工艺21~23,经过一定时间的耐盐驯化后,反应器的耐盐能力大大提升,在40 g/L盐度下依然有良好的处理氨氮效果。
但MBR中的膜污染问题会导致运行和维护成本的增高,尤其在高盐环境下微生物分泌的胞外聚合物(extracellular polymeric substances,EPS)增加,使膜污染问题更加严重,影响其在实际工程中的运用。
为了减少膜污染带来的MBR运行费用昂贵问题,把生物膜和膜组件结合在一起,将会大幅度提高微生物高盐环境下的降解能力以及缓解膜污染问题,由此产生了生物膜耦合MBR工艺,如工艺24~26。工艺24、25在缓解膜污染的同时,还使生物膜耐盐性进一步提高,而工艺26因为接种了嗜盐菌,故在100 g/L的极高盐度下还对氨氮有理想的去除效果。
02 提高生物法耐盐能力的有效途径
综合以上几种生物法,发现它们之所以能够在高盐环境下还可以对氨氮有很强的降解能力,主要有以下几种作用:
(1)形成生物膜或污泥颗粒化保护内部脱氮菌以此减缓高盐的抑制;
(2)增加了生物量和提高了生物多样性,从而加强脱氮能力;
(3)固定耐盐脱氮菌,防止流失。下面对这些作用进行分析。
2.1 形成生物膜或污泥颗粒化
Zichao Wang等把生物膜和活性污泥放入同一个反应器中进行耐盐驯化,考察它们的硝化速率后发现,随着进水含盐量的提高,生物膜的受抑制程度远远小于活性污泥,类似地,Huining Zhang等利用高通量检测30 g/L盐分下活性污泥与生物膜内微生物群落的种群结构,发现不适于在30 g/L盐分生长的脱氮菌依然存活于生物膜中。
这些都说明生物膜的存在保护了不耐盐的微生物,使微生物活性和脱氮性能提高。
S. Corsino等把嗜盐活性污泥分别放入AGS和SBR两种反应器中接种,AGS以好氧颗粒污泥运行方式逐渐颗粒化,SBR以活性污泥方式保持不变。因为是用同一嗜盐污泥接种,两个反应器在30 g/L下虽污泥形态不一样,但脱氮效果相当且菌群一致。当提升盐分至70 g/L时,AGS和SBR对氨氮的去除效果分别降低至51%和43%,其氨氮降解速率下降程度也与Zichao Wang等类似,出现明显不同的下降幅度,得出活性污泥颗粒化或形成生物膜更适合于高盐环境下运行,Fang Fang等也有类似的发现。
综上所述,高盐环境下生物膜或污泥颗粒化更有利于微生物的繁殖生长,硝化菌在生物膜内相比于在活性污泥内更能抵抗有害环境的影响,这一点在颗粒污泥中更加明显,因为活性污泥松散的结构更容易使脱氮菌质壁分离导致死亡,造成脱氮效果变差。
2.2 增加生物量和生物多样性
提高生物量增加了反应器的脱氮性能,这是因为在反应器容积不变的情况下,利用生物膜或MBR工艺,可以明显提高单位体积内反应器的污泥浓度。
即使高盐环境会对脱氮菌产生抑制,污泥浓度的提高也会使反应器运行起来并取得良好的脱氮效果。
另一方面,硝化菌生物多样性的提高会使脱氮有多种途径,比较常见的有自养与异养的硝化菌和反硝化菌,以及Anammox等。
如果运行条件得当(如溶解氧梯度变化),这些菌在生物膜或颗粒污泥中可以同时存在,多种脱氮路径的出现就会大大强化反应器脱氮性能。
Huining Zhang等在相同条件下运行活性污泥和固定式生物膜两种反应器,发现在60 g/L盐分下生物膜中微生物丰富度和多样性指数均优于活性污泥,并且生物膜脱氮效果优于活性污泥。
然而可以耐受更高盐度的脱氮菌只有少数,盐度越高,脱氮菌种多样性越低,保护脱氮菌的生物膜随着盐度的提升,效果也越来越弱,这就导致当上升至某一盐度以上时微生物多样性优势不复存在,脱氮效果急剧下降。
L. Quartaroli等在SBR中培养AGS,当盐度从0上升至30 g/L时,Shannon指数从4.14下降至2.56,盐分上升至40 g/L时,氨氮去除率下降至60%左右;
类似地,Jianhang Qu等利用多级接触氧化处理高盐氨氮废水时,当盐分从35 g/L上升至70 g/L时,第1、3、5、7格室内生物膜的Shannon指数分别从3.89、4.71、4.69、5.29下降至3.57、2.77、3.84、4.00,对进水氨氮的去除率也从60%下降至20%以下。
Chengliang Liu等在上流式固定床中形成Anammox生物膜对氨氮进行处理,由于菌种比较单一,其在35.06 g/L盐度下去除效果迅速下降,而普通的生物膜工艺(序号11~15)在50 g/L才会出现这种情况。
2.3 固定耐盐脱氮菌
脱氮菌随着环境中的盐度提升,其产率系数下降和对氨氮利用率变低,致使增殖能力下降,世代周期延长。
生物膜可以使微生物有一个较长的世代周期,而MBR膜组件完全截留微生物使污泥龄方便控制,所以这两种工艺提供了防止耐盐脱氮菌流失的优点,故相比传统活性污泥法,耐盐驯化时间更短,能够在相对较短时间内适应新的高盐环境。
在上文中所提到的AGS和SBR两种反应器中,S. Corsino等将盐分从30 g/L提升至70 g/L时AGS和SBR的去除氨氮效果急剧下降,不同的是AGS在第18天恢复稳定运行,SBR则需要27 d才可以完成。
Zichao Wang等在生物膜与活性污泥的耐盐驯化实验中发现,耐盐脱氮菌在生物膜中所占的比例均高于活性污泥,这表明大量的耐盐脱氮菌富集在生物膜中。
类似地,Fang Fang等将Anammox污泥颗粒化后,其在135 d内就可在30 g/L氯化钠盐度下有良好的脱氮效果,相比Anammox活性污泥(工艺6~7),其耐盐驯化时间大大缩减。
03 生物法处理含盐氨氮废水时常见问题解决方案
3.1 溶液中亚硝酸盐的积累
亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)和氨氧化菌(ammonia-oxidizing bacteria,AOB)都会在高盐环境中被抑制,而NOB相比AOB更容易受到盐度的影响,导致AOB产生的亚硝酸盐无法被NOB及时有效地降解成硝酸盐,因此在含盐氨氮废水运行过程中亚硝酸盐积累是一个普遍现象。
M. Pronk等利用AGS处理含盐氨氮废水,发现AOB不受20 g/L以下氯化钠盐度的影响,而NOB在20 g/L盐度下完全被抑制,亚硝酸盐出现了大量的积累。
Yueshu Gao等利用生物膜降解含盐氨氮废水,结果发现当进水中氯化钠从0上升至35 g/L时,AOB活性没有任何影响,NOB被严重抑制,只有把盐分控制在15~25 g/L范围内,亚硝酸盐积累现象才会慢慢消失。
简陈生使用MBR对含盐氨氮废水进行处理,NOB在30.5~51.02 g/L盐度范围一直处于被抑制状态。
赵佳伟等以亚硝酸盐为唯一氮源,发现将盐分提升至40 g/L时,亚硝酸盐可以有99%去除率,而再提升至60 g/L时,对亚硝酸盐的去除效果并不会随着运行时间好转。
分析这些生物膜、AGS和MBR工艺中NOB的表现,可以知道亚硝酸盐积累成了高盐氨氮废水生物法处理时常见的难题,但是将盐分控制在一定范围之内亚硝酸盐积累还是可以得到解决。
相对地,强化NOB效果去解决亚硝酸盐积累问题,不如利用NOB的耐盐性较差的特点,彻底抑制NOB,比如通过改变反应器工况条件来建立短程硝化-反硝化或短程硝化-Anammox脱氮途径,从而去解决这一问题。
S. Corsino等利用AGS成功在50 g/L盐度下对废水中的氨氮取得90%以上的去除率,研究发现其脱氮机理是亚硝化-反硝化过程。
类似地,魏良良和Zonglian She等也实现了这种高盐下部分硝化-反硝化的脱氮途径。
3.2 污泥中难生物降解物质增加
高盐环境下,微生物的生长和代谢能力的降低造成了生物产量减少,若反应器中污泥浓度比较稳定,排除的污泥量就会变少,这就导致了高盐氨氮废水生物法处理的污泥龄延长。
延长的污泥龄虽然有助于生物多样性的提高,从而增强脱氮能力,但是在高盐环境下,过长的污泥龄会令污泥中难生物降解物质增加,以MLVSS/MLSS下降的形式表现出来,反而使脱氮能力降低。
S. Corsino等发现,运行AGS处理含盐氨氮废水时,整个实验过程中颗粒污泥从黄色光滑形态慢慢演变成了棕色不规则形态,直至实验结束MLVSS/MLSS下降至50%左右。
随后S. Corsino等为了解决污泥中难生物降解物质增加现象,让活性污泥和AGS分别在14 d和27 d两种污泥龄下进行实验,结果发现污泥龄从27 d降低至14 d时,活性污泥中的难生物降解物质质量分数从35%降低至27%,好氧颗粒污泥中MLVSS/MLSS值从45%升高至65%,两种工艺的生物活性也得到了提高,表明较低的污泥龄确实能够使难生物降解物质在污泥中的比例降低从而增强脱氮效果。
3.3 上清液浑浊
利用生物法处理含盐废水时,随着盐分的升高,不能适应高盐环境的微生物会发生质壁分离等严重危害微生物生存的现象,具体表现为丝状菌、原生动物和后生动物种类大幅度减少甚至消失。
丝状菌的减少会引起颗粒污泥的结构变得破碎,活性污泥中的菌胶团变得松散,导致轻质的污泥或游离菌体漂浮在液面上,另一方面较少的原生动物和后生动物令游离菌体、有机颗粒不能被及时地清除,进一步导致了上清液浑浊现象。
这种出水浊度加重现象,既不利于泥水分离,又会造成反应系统中微生物大量流失,造成系统对氨氮处理效果变差。
这种问题虽然可以用MBR工艺完全截留微生物的特性得到解决,但是会相应地增加更多的膜污染,是一个亟须解决的难点。
宋伟龙为了解决高盐环境下污泥絮体崩溃以及微生物活性受抑制现象,进而引起除污性能下降和膜污染加剧的问题,利用生物膜工艺保护微生物,在有效保护微生物的同时还可以对使浊度变高的生物质进行吸附降解,使膜污染周期从10 d延长至44 d,上清液浑浊问题得到一定控制。
Hanqing Wang等观察MBR和生物膜MBR两种反应器的膜污染情况,结果发现随着废水中盐度从0升至60 g/L时,MBR系统在短短几天之内跨膜压差超过30 kPa,而生物膜MBR则显示出良好的抗膜污染能力,可以说明生物膜确实能够有效地对引起浊度变高的物质进行吸附和降解。
3.4 耐盐驯化时间长
在高盐环境下,脱氮菌极为敏感,这不仅使其用于异化代谢的生物能过少,造成出水氨氮变高,还会令其自身生长变得缓慢从而延长了耐盐驯化时间。
如表 1所示,不同的工艺耐盐驯化所用的时间有快有慢,其中Anammox最慢,这可能是因为其本身的世代周期长于其他菌群,导致耐盐菌不能很快富集,活性污泥法次之,生物膜与复合工艺所用的耐盐驯化时间相对其他两种较快。
然而,相同的工艺使用类似的反应器上升到相近的盐分所用的驯化时间也有不小的差异,这可以推断出在耐盐驯化过程中还是有一定的科学规律可循,找出其特点可以在较短的时间内提升最大的盐分,节约宝贵的时间。
赵佳伟等通过耐盐驯化建立盐度分别为10、20、40 g/L的三种生物膜反应器,得出当盐分小于20 g/L时该种反应器不需要梯度升盐,可直接启动并能够在一个月内获得成熟的硝化生物膜达到良好的脱氮效果。
S. Navada等为了缩短生物膜反应器耐盐驯化所用的时间,建立四种不同的升盐速率,分别为每日增加1、2、6、15 g/L溶解盐,提升到32 g/L时停止。
结果发现40 d后以每日15 g/L的升盐速率其降解氨氮的能力最高,而1 g/L的升盐速率反而降解效果最差,这说明盐分的提高并不是越慢越好,科学升盐才可以有理想的处理效果。
04 总结
(1) 通过对各种工艺的运行效果进行分析,得出传统活性污泥法不适用对高盐氨氮废水进行处理,以生物膜、污泥颗粒化和膜组件这些生物强化方法处理盐度超过35 g/L的高盐氨氮废水是可行的。
(2) 分析了工艺有效脱氮方法,得出延长合适的污泥龄、提高生物量和微生物多样性并以生物膜的形式运行反应器可以大幅度地提升反应器在高盐下的脱氮性能。
(3) 列举出了生物法处理含盐氨氮废水时,会出现溶液中亚硝酸盐积累、污泥中无机盐积累、上清液浑浊和耐盐驯化时间长等问题,并给出了合理的建议。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,中信环境技术中标新疆图木舒克市经济开发区达坂山工业园高盐废水处理厂施工运营一体化(PC+O)项目,中标价:134219012.3000元,运营报价20.69元/m。本项目设计为5000立方米/天的高盐废水处理厂,通过提纯废水中的硫酸钠实现再利用,并用部分硫酸钠制酸碱后回用于生产,实现高浓含盐废水资源化,
8月23日,新疆生产建设兵团三师图木舒克经开区达坂山工业园高盐废水处理厂建设项目施工及运营一体化总承包(PC+O)中标候选人公示第2次公示。中标候选人如下:中标候选人第一名:中信环境技术投资(中国)有限公司(联合体单位:四川中喻环境治理有限公司),投标报价:134219012.3000元,运营报价20.6
据工源气浮消息,8月16日,由锡东新城商务区管委会、锡山区科技局、清华大学科研院主办的“清锡未来行”(第四期)清华老师进锡山活动在中电(无锡)数字芯谷举行。区委副书记、副区长葛敏,清华大学科研院副院长李千,清华大学科研院、清华大学相关合作院系的20多位教授专家及50多家锡山区创新型企业
北极星水处理网获悉,7月11日,中国石化发布中天合创能源有限责任公司中天合创水务部废水、高含盐、矿井水高压反渗透框架招标反渗透膜招标公告。公告如下:(重招)2024-2026中天合创水务部废水、高含盐、矿井水高压反渗透框架招标采购招标公告1.招标条件本招标项目(重招)2024-2026中天合创水务部废
参加鄂尔多斯环保产业大会可享8折优惠!2024全国煤矿与煤化工环保产业大会暨第三届鄂尔多斯保技术装备展示对接会01大会时间地点时间:2024年7月25-27日地点:鄂尔多斯市国际会展中心02大会组织机构主办单位:中国煤炭加工利用协会联合主办:鄂尔多斯市环保投资有限公司、天津得威建环保科技有限公司协办
6月5日,倍杰特发布公告,公司收到中招国际招标有限公司发来的北方华锦联合石化有限公司精细化工及原料工程项目化学水处理站成套设备采购及安装标段的《中标通知书》,确认公司为中标人,中标价170036325.00元。本次中标项目是为北方华锦联合石化有限公司精细化工及原料工程项目提供化学水处理成套设备
在双碳背景下,环保产业往国民经济新支柱方向不断培育壮大,有数据显示,预计“十四五”期间,环境治理营收年均增长10%左右,2025年营收总额有望突破3万亿元。化工行业作为高盐废水的“排放大户”,是我国打赢环保攻坚战的重点领域,实现“化工废水零排放”是政策所规、民心所向、市场所趋。蒸发结晶是
2月23日,阿拉善公共资源交易网发布阿拉善高新技术产业开发区高盐污水资源化处置利用及收集设施维护改造项目和浓盐水集中处理及中水回用资源化处置特许经营权项目招标计划发布,预估发包价2.3亿元。项目招标人为阿拉善高新技术产业开发区(乌斯太镇)城乡建设局。招标内容为将现有存量浓盐水(约270万
随着国家对环境保护的日益重视,火电行业正在大规模开展废水综合治理改造。火电厂排污许可证一般不允许脱硫废水外排,脱硫废水由于含盐量、氯离子、硬度等浓度高,厂内无法直接综合利用,火电厂需建设废水零排放装置满足环保要求,火电厂废水零排放是火电厂废水综合治理改造的难点。近几年来已有上百家
5月10日,中国电力企业联合会以视频会议形式组织召开了科技成果鉴定会,华电水务“烟气蒸发干燥高盐废水技术的研究与应用”“火电厂智能节水及废水资源化技术的研究及应用”两项科技成果顺利通过鉴定。“烟气蒸发干燥高盐废水技术的研究与应用”在十里泉发电厂成功应用,使得电厂全厂废水完全实现零排
盐分大于多少是高盐废水和高盐废水的生化处理,我们要先了解什么是高盐废水,和高盐废水对生化系统的的影响!一、什么是高盐废水?高盐废水是指总含盐质量分数至少1%(相当于10000mg/L)的废水。其主要来自化工厂及石油和天然气的采集加工等。这种废水含有多种物质(包括盐、油、有机重金属和放射性物质
8月5日,清新环境石化板块子公司大连理工环境工程设计研究院有限公司(以下简称“大工环境”)中标中石油“新疆独山子石化公司塔里木120万吨/年二期乙烯项目污水处理厂含盐废水超滤+反渗透装置设备”EP项目,对于推动清新环境在石油石化领域的业务拓展具有重大意义。独山子石化公司是中国石油旗下集炼
2021年10月29日,国能包头煤化工有限责任公司举行外排废水脱盐达标排放改造项目中交会议。
工业废盐、高浓度含盐废水的安全、经济有效处置已经成为制约产生工业废盐、高浓度含盐废水相关行业发展的瓶颈问题。其处置方式按照处置物态的不同可分为湿法处置和干法处置。本文系统性地梳理了这两类方法包含的各种处理技术的优缺点,并对工业废盐、高含盐有机废水的处理技术进行了展望。
高含盐废水是指含至少总溶解固体TDS(TotalDissolvedSolid)和有机物的质量分数大于等于3.5%的废水,包括高盐生活废水和高盐工业废水。主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂及石油和天然气的采集加工等。这些废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-、SO42-、Na+、Ca2+等离子。这些高盐、高有机物废水,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生极大危害。该类浓废水的共同特点是:不能简单地用生化处理,且物化处理过程较复杂,处理费用较高,是污水处理行业公认的高难度处
摘要:在最近的几年时间里了,我国社会经济得到了飞速的发展,有效的推动了我国工业技术水平的大幅度提升,从而带动了我国民众生活质量的显著提高,使得各个行业对水体质量提出了更高的要求。当前,在世界范围各个国家中,人们对环境保护工作越发的重视,并且制定了专门的能源消耗规定。现如今,我国水
在化工废水处理过程中,由于工艺需要很多企业会产生高含盐废水,一直以来,在业内外的期待、审视甚至要求下,在很多企业的环评报告中,高含盐废水的最终处理都描述为“零排放”。那么究竟什么是“零排放”呢?“零排放”是否意味着只要水达到循环利用而零外排就可以了呢?“零排放”水处理过程中对于最
摘要:与石油、天然气相比,我国煤炭资源更加丰富,发展新型煤化工产业是大势所趋。煤炭和水资源的逆向分布导致煤化工企业所在地水环境问题尤为突出。常规处理工艺难以实现废水达标排放和资源回用目标,需通过特定的近零排放技术工艺,将浓盐水进一步浓缩至盐结晶,产水全部回用,结晶盐外排作为固废处
有关高盐废水处理工艺的简短总结,大家一起来学习吧!染料、农药、制药和日用化工等精细化工生产过程中产生的废水含盐量为3~10%(以质量计)、COD在50000~150000mg/L范围内,行业内将这类废水统称为高浓度高盐废水,是一种极难处理的废水,对微生物生长的毒害尤其大。处理高浓度含盐废水通常是“预处理+
高含盐废水是指含有有机物和至少总溶解固体TDS的质量分数≥3.5%的废水,包括高盐生活废水和高盐工业废水。主要来源于直接利用海水的工业生产、生活用水和食品加工厂、化工厂及石油和天然气的采集加工等。这些废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-,SO42-,Na+,Ca2+等离子。若未经处
摘要:随着我国经济的高速发展以及生产力的大大提升,随之也带来了诸多问题。尤其是煤化工企业的发展造成对水资源的污染加重,在煤化工企业的生产中排放了大量的废水。其中主要分为含盐废水和有机废水。其中循环水排污、除盐水站排污、锅炉排污和化学清洗排污等是含盐废水的主要来源,就目前对化工废水
【社区案例】A2O+MBR氨氮去除效率95%,总氮只有50%。现对缺氧段投加乙酸钠补充碳源。氨氮达标,TN去除率低的问题并不复杂,原因有很多,但是常见的就三种情况,本文将具体解释一下一、缺少碳源对于脱氮系统,碳源决定了脱氮效率的深度,反硝化池中理论上只要CN比为2.86时,就可以完全脱氮,如果再加上
在污水处理厂硝化系统出现问题,出水氨氮超标时,想要迅速、有效的去除氨氮,只能通过物理化学的手段来应急了!常用且有效的物化手段目前只有折点加氯及沸石吸附法!市场上的很多氨氮去除剂就是次氯酸盐,就是就是利用折点加氯的原理!本文详细介绍一下两种工艺,让大家能做到遇到问题心中有底!一、折
【社区案例】化工废水,因硝化池更换曝气器和过年放假水温过低造成氨氮去除率大幅降低,年后进水氨氮过高又造成冲击,现在氨氮几乎没有去除率,停止进水一周只投加少量葡萄糖没有什么改善,求各位老师指点一二。缺氧150方,好氧池450方,现在每天投加50公斤葡萄糖,二沉池氨氮接近三百,COD四百,溶解
氨氮的去除手段我们常用到生化脱氮,但是在一些特殊场合或者应急情况下,可能需要用到非生化的手段去去除!
氨氮去除剂主要用于去除废水中的氨氮,投加后使废水中的氨氮部分生成不溶于水的氮气、二氧化氮、一氧化氮及水,该产品中的催化成分将废水中离子状态的氨氮转化成游离状态,并有辅助去除COD及脱色效果。氨氮去除剂的特点1、反应速度快,2-10分钟左右即可完成反应过程,个别水会达到30分钟左右2、去除效
氨氮废水处理技术有哪些?本文为您介绍:1、吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。而控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于
摘要:介绍了火电厂脱硫废水的水质特点,分析其氨超标现状,阐述了化学沉淀工艺去除脱硫废水中氨氮的优势,并论证其可行性。结果表明,当PH为8.5,n(Mg):n(N)为5.0:1,n(P):n(N)为2.0:1、反应温度为25~30℃、搅拌速度为150r/min、搅拌时间为20min时,该工艺对某火电厂脱硫废水中氨氮去除率能达到90%以上
摘要:介绍了火电厂脱硫废水的水质特点,分析其氨超标现状,阐述了化学沉淀工艺去除脱硫废水中氨氮的优势,并论证其可行性。结果表明,当PH为8.5,n(Mg):n(N)为5.0:1,n(P):n(N)为2.0:1、反应温度为25~30℃、搅拌速度为150r/min、搅拌时间为20min时,该工艺对某火电厂脱硫废水中氨氮去除率能达到90%以上
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!