在燃烧动力学参数中,活化能是一个非常重要的参数,它代表反应物的分子由初始稳定状态变为活化分子所需要吸收的能量,活化能比着火点更能从本质上描述试样的着火性能. 由表 5可知,试样在燃烧峰前的活化能通常比燃烧峰后的活化能小,这是由于峰前通常是反应由难变易的过程,而峰后则是反应由易变难的过程. 同时低温段的活化能也比高温段的活化能小,这与污泥固定碳燃烧需要高温是一致的(刘亮等,2006).
本文亦采用(Cumming,1984)提出的质量平均表观活化能Em的概念和计算方法计算燃烧反应整体的表观活化能,Em的定义如下:
式中,E1~En为各反应区段的表观活化能; F1~Fn为各反应区段的燃烧质量损失份额. 除去初期在低温段受热失重的水分和着火前少量挥发分损失的质量,各试样燃烧阶段失去的质量总和占总失重的80%以上,可很好地模拟主要燃烧过程,各试样质量平均表观活化能Em值如表 5所示.
从表 5可以看出,随着升温速率的升高,YR污泥燃烧各阶段活化能基本呈现下降趋势. 同时,当升温速率为30 ℃ ˙ min-1时,Em达到最小,表明利于整个燃烧反应过程.
富氧燃烧条件下,使YR污泥第一和第二挥发分燃烧前期活化能增加,表明燃烧反应速率增大,同时TG曲线也越来越陡,DTG曲线的峰值也越来越大,燃烧反应越来越迅速(方立军和于澜,2014),同时从质量平均表观活化能Em来看,提高氧体积分数会使质量平均表观活化能有所降低,表明对改善YR污泥燃烧性能是有利的.
从YR污泥与其他污泥的单一燃烧和混合燃烧所得的活化能可以看出,YR污泥燃烧过程的质量平均表观活化能Em最小. 对于混合试样的燃烧来说,YR污泥与其他污泥混合燃烧后活化能均有所提高. 这主要是因为本文所求为质量平均表观活化能,是整个燃烧反应过程中活化能的均值,相对于燃烧阶段,着火阶段时间太短,因此对活化能的影响非常小;而随着燃烧特性指数更大的污泥混合比的增加,混合试样的着火越来越迅速,着火开始后马上进入迅速燃烧,并在短时间内放出大量的热量,加速了温度的上升,而活化能越大的反应对温度越敏感,反应就越迅速. 由混合试样的DTG曲线可以看出,随着混合试样比例的增加,DTG曲线越来越陡,说明其燃烧反应越来越迅速. 活化能增大说明混合试样反应强度增强(刘国伟等,2011),这与YR污泥混合其他污泥后燃烧特性指数有所改善是一致的.具体参见污水宝商城资料或http://www.dowater.com更多相关技术文档。
在YR污泥与煤混合燃烧的实验中,由于煤比污泥的综合燃烧特性指数大了近2个数量级,因此煤粉的加入,极大地促进印染污泥的燃烧. 同时,对比纯煤和YR50%+煤50%的活化能数据,YR污泥的加入有利于大幅度减少煤燃烧时所需的活化能.
5 结论
1)不同来源单一污泥整个燃烧过程可以分为自由水和结合水析出、挥发分析出、固定碳燃烧、残留物的燃烧和分解4个阶段,其中挥发分的析出和燃烧阶段制约着YR、KFQ及LJ污泥整个燃烧过程,而造纸ZZ污泥还包括固定碳的燃烧阶段.
2)单一印染污泥的可燃性和综合燃烧特性较其他污泥差,但与其他污泥混合后,其混合污泥的可燃性能和综合燃烧特都有不同程度的提高;当向印染污泥中添加50%KFQ污泥时,混合污泥的综合燃烧特性和可燃性改善最佳.
3)各单一试样和混合试样的燃尽指数相差较小,提高燃烧的升温速率有助于污泥的燃尽指数.
4)印染污泥在富氧条件下失重过程主要受温度影响,氧气浓度的提高可从整体上降低污泥燃烧的活化能,从而提高了印染污泥的可燃性和综合燃烧特性.
5)利用f(a)=(1-a)0.5和f(a)=(1-a)2可以分别描述单一污泥及混合污泥第一挥发分峰前及峰后燃烧反应机理.
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有