化学沉淀法是目前我国电厂应用最广泛的脱硫废水处理方法,该法处理后的水质能够达标,且对副产品石膏能够进行综合利用,有较好的经济性,但是这种方法也有很多缺点[7]:1)投资较大,需要单独的化学加药系统,也需要大量的化学药剂;2)系统庞大,维护费用较高;3)目前对Cl-、F-没有有效的去除方法,而且Cl-在酸性条件下有很大的腐蚀性,因此处理后的废水无法回收利用。4)随着环保标准的日益严格,脱硫废水中COD和其他有害元素,如硒等,已引起监管部门的关注。
脱硫废水的污染物含量主要取决于煤燃烧的形式、静电除尘器的除尘效率、补给水中的杂质的种类、石灰石中重金属和杂质的成分及含量等,甚至石膏脱水所选用的设备对其成分也有影响。可见,脱硫废水的成分非常复杂,传统处理方式的处理难度很大。
其处理过程中的过饱和、重金属、悬浮物的去除和高达30000-60000mg/l的氯含量如何降低。若废水中含有硒、硝酸盐和有机物,在排放之前还要进行生物处理。这种处理方法能够减少重金属和悬浮物含量,酸度和需氧量,但是不能减少氯含量和总溶解固体(TDS)。随着国家对汞等重金属污染物的排放逐渐重视,传统的生化处理方法已不再适用,急需新的废水处理方法的出现。
3、电厂高浓度含盐水现状及废水零排放
除了脱硫废水,电厂还有其他的高浓度含盐废水需要处理,如反渗透的浓水,高循环倍率的循环冷却水排水,部分锅炉排污水、电厂化学车间树脂再生酸碱液的中和水等。以内蒙古某发电厂为例,现有2台330MW发电机组,运行1台机组化学水处理反渗透系统排水浓水30t/h左右,循环冷却水排污水20t/h左右,也即单台机组外排废水50t/h,如果两台机组同时运行,一天排放污水高达2400t左右,按照水资源费用5元/t,年运行小时数7000小时计算,一年水资源费用达350万元,另外排污费用按1元/t计算,一年排污费达70万元,这还没有计算管理以及污水排放的运行费用。该厂反渗透产生的浓水,其中无机盐浓度达3000-4000mg/L,循环冷却水中无机盐浓度可达2000mg/L。
如果电厂高浓度含盐水得不到妥善的处置,直接排入天然水体,必然会对水环境产生不利影响,增加局部地区的盐分。由于浓水含盐量高,传统的给排水处理都无法有效地解决。目前对于高浓度含盐水基本没有进行特别的处置。
高浓度含盐水中含有各种有机和无机污染物,若直接排放可能会对土壤、地表水、地下水等产生污染。对于中国内蒙古这类深居内陆,地处干旱、半干旱地带,大陆性气候明显,大气降水少,蒸发量大,水资源匮乏的地区,随着经济的发展和人口的增长,将面临着严重的缺水挑战。为了实现电厂的节能节水,同时考虑到人与自然环境的可持续发展,电厂废水零排放更具有现实的意义。
4、新型废水喷雾蒸发处理技术
综合上述关于脱硫废水及高含盐水处理的研究,提出了一种脱硫废水喷雾蒸发技术来实现电厂废水零排放。如图2所示,将脱硫系统排出的废水浆液与加压空气混合后,废水经雾化喷入空预器与除尘器之间烟道内,雾化液滴与高温烟气充分接触,气液两相发生强烈热交换后蒸发,烟气温度降低至酸露点以上。废水蒸发后所析出的金属盐、悬浮物等物质随烟气进入后面的除尘系统中被脱除。
图2脱硫废水蒸发系统工艺图
据文献报道[8],某电厂烟气脱硫工程单台300MW机组脱硫废水排放量仅为4.2m3/h,水温为52℃,除尘器前烟道中烟气温度为142℃,喷入烟道的雾化脱硫废水迅速在烟道中蒸发,脱硫废水中的固体物(重金属、杂质以及各种金属盐等)和灰一起悬浮在烟气中并随烟气进入电除尘器中被捕捉,因脱硫废水中固体量和各种金属盐含量仅为395kg/h,对灰的物性及综合利用不会产生影响。
经计算,脱硫废水喷入烟气后,烟气湿度由7.14%增加至7.56%,烟气温度由142℃降至136℃,烟气处于不饱和状态,高于酸露点温度,不会对烟道和电除尘器产生腐蚀。同时,因烟气温度的降低及含湿量的增加,减少了FGD系统的水耗量。
日本三菱重工为一台500MW机组设计了脱硫废水蒸发系统。从空预器前烟道旁路抽取3.5%的烟气量用于废水蒸发,这使得热能降低了0.4%。废水中的重金属及盐类等干态物质使后续除尘设备灰尘处理量增加3%。经实测表明,废水中的氯化物经蒸发处理后形成一种和飞灰大小相似的盐类,废水中含有的汞形成固体沉淀下来。该蒸发系统所产生的固体物能够被独立捕获下来并与飞灰或其他如水泥、石灰等物质形成一种稳定的产物[9]。
5、脱硫废水蒸发相关技术研究现状
目前,脱硫废水利用烟气余热蒸发技术还少有在燃煤电厂应用,理论研究也很匮乏。在研究早期由于技术上无法对雾滴蒸发过程进行细致的观察,学者们先对蒸发过程进行了纯理论上的数值模拟[10-19]。Gradinger和Bouloueho[20]在1998年确立了一种零维液滴蒸发模型,但液滴在蒸发过程中物理参数随温度变化没有充分考虑,同时忽略了蒸发时液滴内部温度梯度的产生,因此模拟结果缺乏真实性。
NasserAshgriz[21]等提出对流对液滴蒸发特性的影响规律及修正。LiliZhang[22]模拟了液滴干燥过程,考虑了液滴内部组分的转移过程和温度梯度的存在,这直接影响了液滴表面的蒸发速率。KimH[23,24]等研究了环境压力对液滴蒸发的影响。YoungchulRa[25]应用离散多组分燃料液滴模型对多组分燃料喷雾和蒸发进行了模拟计算,热流量表达式通过近似准稳态能量平衡获得,忽略辐射的影响。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有