显微镜粒径分析系统由正置显微镜、数字摄像头、自动载物台和显微粒度分析软件等组成。氧化镁膜片被液滴撞击后的典型显微图如图2所示。
图2典型氧化镁撞击膜片显微图
测试时,启动风机,调节风机电机变频器,使用微压计、毕托管在入口风道标定气流速度和气流量;开启水泵调节变频器,使得喷嘴入口压力达到设计值,从而产生所需的液滴。将液滴采样器伸入除雾器后的测量口采样并计时。对已采样的氧化镁膜片进行分析,最终获得气流中的液滴含量,通过除雾器前后气流中液滴含量,得到除雾器除雾效果。
3实验结果及分析
空塔流速、除雾器布置及组合方式、除雾器与喷淋层间距等因素对除雾器除雾效果有较大的影响。实验台模拟实际喷淋塔内除雾器的运行工况,空塔流速分别设定为2.4m/s,3.1m/s,4.0m/s,4.7m/s,5.2m/s;一级除雾器为屋脊式弧形板式,板间距30mm;二级除雾器为屋脊式带钩弧形板式,板间距23mm;管式除雾器为2层平行圆形管排错列布置,管径d75mm,2排圆管中心垂直间距85mm,横向间距149mm。
3.1空塔流速对除雾器出口液滴含量的影响
随着空塔流速提高,气体携带进入除雾器的液滴粒径增大,数量增多,导致除雾器出口液滴含量发生变化,对除雾器的液滴脱除效率会产生一定的影响。空塔流速对除雾器出口液滴含量的影响如图3所示。
图3空塔流速对除雾器出口液滴质量浓度的影响
由图3可知:
(1)塔内气流速度小于4.1m/s时,一级除雾器出口液滴含量没有明显变化,当流速增加到4.7m/s时,一级除雾器出口液滴含量急剧下降,直到空塔流速增加到5.2m/s时一级除雾器出口液滴含量大幅增加,此时在一级除雾器出口可观察到有大颗粒液滴从除雾器飞溅出来。
这是由于流速低于5.2m/s时,随着气体流速增大,除雾器入口液滴含量增加,而流速的增大也会增强除雾器脱除效果,综合作用使一级除雾器出口液滴含量降低。当气流速度达到5.2m/s时,气流携带进入除雾器的液滴量进一步增加,除雾器脱除的液滴量过大,积液无法顺利排出,液滴被气流二次携带,造成一级除雾器出口液滴含量大幅增加。
(2)随着入口气流速度增加,二级除雾器出口液滴含量有所增加,空塔流速达到4.1m/s后除雾器的脱除效率增加,二级除雾器出口液滴含量开始下降,当气流速度达到5.2m/s后,二级除雾器出口液滴含量仍然下降,说明在该气流速度下除雾器仍然没有发生气流对液滴二次夹带,除雾器出口的液滴含量没有出现突然增大的现象,但从整个实验过程看,气流速度对除雾器出口的液滴含量还是有较大影响。
3.2空塔流速对除雾器出口粒径分布的影响
由于一级除雾器入口液滴含量非常大,无法用氧化镁膜片撞击法测量粒径分布规律,本文暂不讨论。液滴粒径统计的原则为:小于10μm的点不统计;每个粒径值表示1个粒度区间,如20μm表示的粒径(d)是10μm≤d<20μm区间内的所有液滴。不同空塔流速条件下,一、二级除雾器出口液滴粒径分布如图4所示。
图4不同空塔流速一级、二级除雾器后液滴粒径分布
从图4可以看出:(1)一级除雾器出口粒径90以上液滴完全脱除,在气流速度低于5.2m/s的实验过程中均未发现;流速2.4m/s时,一级除雾器出口主要以40~70μm粒径液滴为主,其他较大粒径或较小粒径液滴含量所占比例较少;随塔内速度增加,大粒径液滴所占比例逐渐减少,小粒径液滴所占比例逐渐增大;塔内气流速度增加到4.7m/s时,70μm以上粒径已消失,30μm粒径液滴所占比例最大。
(2)二级除雾器出口液滴粒径均在60μm以内,气流速度2.4m/s时50μm粒径液滴占比最大,液滴粒径越小,其质量所占总液滴质量的比例越小;随气流速度增加,大粒径液滴的质量占总液滴质量的比例逐渐减小,小粒径液滴的质量占总液滴质量的比例逐渐增大。
(3)塔内除雾器对大粒径液滴的脱除效果较好,经过除雾器最终排出的液滴主要由小粒径液滴组成。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有