2.3原电池库仑滴定法
库仑池中有两个电极,一是活性炭阳极,二是铂网阴极,池内充0.1mol/l磷酸盐缓冲溶液(pH=7)和0.3mol/l碘化钾溶液。当进入库伦池的样气中含有NO2时,则与电解液中的i-反应,将其氧化成I2,而生成的I2又立即在铂网阴极上还原为I-,便产生微小电流。如果电流效率达100%,则在一定条件下,微电流大小与样气中NO2浓度成正比。最低检测出浓度(以NO2计)为0.03mg/m3。
2.4气体敏感元件传感器
利用n型金属氧化物半导体(如ZnO,SnO2等)的电导率对环境变化十分敏感的特性,以SnO2为基体材料,采用厚膜工艺研制成的NOx气敏元件具有良好的物理性,化学性稳定,灵敏度高,最低检出浓度为0.1ppm。
2.5化学发光法
在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2跃迁返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成正比,光电转换器吸收光子产生光电流,光电流强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。为得到NO2的浓度,可把NO2预先转化为NO。其检测极限和灵敏度都可达到1ppb以下。
2.6小结
盐酸萘乙二胺比色法是一种传统的化学检测方法,不能实现连续在线分析,只能采样测量。激光诱导荧光法,响应速度快,灵敏度高,可实现很低的检测极限,但系数过于复杂和精密,造价太高。原电池库仑滴定法响应时间变长,连续运行能力差,不适宜连续在线监测。
气体敏感元件传感器具有较好的稳定性,选择性,灵敏度高,成本较低,但随着使用时间的推移,响应时间变长,灵敏度降低,元件属于易消耗品,一般只能使用1-2年,需要经常更换。化学发光法测量精度与灵敏度高,响应时间短,线性范围宽,稳定可靠,是目前主流的氮氧化物测定方法之一,可实现氮氧化物体积浓度的连续在线监测。
3二氧化硫/氮氧化物多组分监测技术
目前光谱吸收法目前国内应用最为广泛的烟气多组分监测技术,其中非分光红外吸收光谱法应用较多,还包括少部分非分光紫外吸收光谱法,又称差分吸收光谱法。这类技术是基于朗伯-比尔(Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。这两种监测技术均可实现对烟气中二氧化硫、氮氧化物多组分的连续在线监测。
3.1非分光红外吸收光谱法
非分光红外吸收光谱法(ndir)是目前国内应用最为广泛的烟气成分在线监测技术。该监测技术是基于被测介质对红外光有选择性吸收而建立的一种分析方法,属于分子吸收光谱分析法。红外光线通过检测气室后,通过测定被气体吸收部分波长后的红外辐射强度来测量被测气体的浓度。该气体分析方法具有如下特点:
1)可测量多组分气体,除单原子的惰性气体和具有对称结构无极性的双原子分子外;
2)测量范围宽,上限可达100%,下限可达几个ppm的浓度,当采取一定措施后,甚至可以进行ppb级的分析;
3)测量精度高,一般都在±2%fs;
4)响应时间快,一般在10s以内;
5)选择性好,特别适合对多组分烟气气体中某一待测组分的测量,而且当烟气中一种或多种组分浓度发生变化时,并不影响对待测组分的测量。
3.2非分光紫外吸收光谱法
非分光紫外吸收光谱法(DOAS)是一种光谱监测技术,其基本原理是利用空气中气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演气体浓度。DOAS基于朗伯-比尔定律,将气体的吸收截面分为随波长的慢变化部分和快变化部分。
通过多项式拟合高通滤波方法去除光谱中的慢变化部分,剩下的则由于分子的窄带吸收造成的光源衰减。由于基于朗伯-比尔定律具有线性性质,烟气中气体的吸收可看做是线性叠加,故可采用最小二乘拟合方法,用气体标准差分吸收截面对测量得到的差分吸收光谱进行拟合,反演出烟气中气体的浓度。
该气体分析方法具有:高灵敏度,可实现多组分实时在线监测;机械、电子部件较简单、无气路、维护简便;开放式光程测量方法,无需采样,高精度非接触测量;适用于活性较大的物质测量等特点,十分适宜烟气中二氧化硫、氮氧化物等多组分气体浓度的连续在线监测。
3.3小结
由于排烟环境及烟气成分复杂,传统非分光红外吸收光谱法对烟气成分的检测结果极易受环境温度、水分含量、hc等因素干扰,从而无法实现对二氧化硫、氮氧化物低浓度的准确测量,因此必须对传统红外吸收光谱法进行技术创新升级,排除温度、水分、HC等因素对其检测结果的影响,才可实现烟气成分的低量程检测。
如新款烟气分析仪(低量程在线型)Gasboard-3000plus在传统红外吸收光谱气体分析技术的基础上,将微流红外吸收光谱气体分析技术与隔半气室设计相结合,并采用整体恒温、水分调节、hc干扰减除、自动调零等装置,可实现红外光谱吸收法对超低排放烟气成分的实时在线监测。
非分光紫外吸收光谱法灵敏度高、检测下限低、选择性好,较适用于超低排放烟气多组分的实时在线监测,如紫外烟气分析仪(超低量程)Gasboard-3000UV基于国际紫外差分光谱吸收气体分析技术,采用独特的算法,长光程多次回返气体室,检测下限达到1mg/m3,抗干扰能力强,测量精度高,同样可满足超低排放烟气监测市场的需要。
4总结
可用于测量烟气中二氧化硫、氮氧化物的监测技术有很多,但如果是在符合HJ/T76(按超低排放限值计算,二氧化硫和氮氧化物量程应不大于175mg/m3和250mg/m3)标准条件下,对烟气单一组分的浓度进行测定,测量二氧化硫浓度可考虑采用紫外荧光法,测量氮氧化物浓度可考虑使用化学发光法;此外,红外/紫外吸收光谱气体分析技术用于对烟气单一组分的测量也十分适宜。
如果是对烟气多组分的浓度进行测定,那么升级版的非分光红外吸收光谱法与非分光紫外吸收光谱法均可作为超低排放烟气在线监测技术的选型参考。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2022 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ? 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有