城市可燃固废的着火点都低于煤粉,其中餐厨固废的着火点最低,废塑料的着火点最高;城市可燃固废的燃烧速度最快时的温度也低于煤粉,餐厨固废的燃烧速度最快时的温度最低,废轮胎的燃烧速度最快时的温度最高;城市可燃固废的燃尽温度也低于煤粉,废家具的燃尽温度最低,废轮胎的燃尽温度最高。
1.4城市可燃固废的处理方式
城市可燃固废的处理方式很多,见表3。废有机制品处理的方法主要分为5种:直接焚烧、焚烧发电、热解气化、填埋和回收再利用。采用焚烧处理,废塑料燃烧会产生大量热量,难以有效利用,利用率只有30%,会造成资源的浪费,并且燃烧过程中产生的二噁英、呋喃等有害气体污染空气;采用填埋处理,废塑料掩埋在土壤中,土壤中没有分解废塑料的酶,难以腐烂分解,会长时间残留在土壤中,给土壤造成严重的污染;回收再利用处理,目前世界各国废塑料的回收率都很低,主要是因为回收技术不成熟,回收成本高,目前也有多种方法对废轮胎进行回收利用,如将旧轮胎进行整体利用,对旧轮胎重新处理、翻新出售,但旧轮胎中能处理翻新的数量很少,对于不能翻新的废旧轮胎,应采取更彻底的处理方式。
废木制品处理方式目前有两种,一种是回收循环利用,将废木制品回收后进行二次加工,制成各种人造板重新使用,如加工成各种刨花板、纤维板、木塑复合材料等;另一种是能源化处理,将废木制品制成木炭和活性炭,或通过生物质气化合成还原气,或直接将其作为工业燃料用于锅炉或发电。目前废木制品的回收制度不完善,回收率不高,应当继续加强国家政策引导,健全回收体系。对于不便回收或者难以回收的废木制品应当开发能源化处理技术,提高能源利用效率。
餐厨固废的处理方法有以下几种:
第一种是焚烧处理,将餐厨垃圾直接进行焚烧是最直接的方法,这种方法处置垃圾效率高并且彻底,焚烧所占用的土地面积少,但焚烧过程中会产生二氧化硫等有害气体;
第二种是填埋处理,将餐厨垃圾直接进行填埋可有效减少对土地的占用,但填埋需要人力物力,并且填埋之后餐厨垃圾会继续产生有机废水及恶臭气体,对周围的土壤及地下水造成严重污染;
第三种是肥料化处理,将餐厨垃圾堆肥处理是一种比较环保的技术,通过好氧堆肥或蚯蚓堆肥可以有效地将餐厨垃圾处理成肥料,但是处理得来的肥料质量不高;第四种是饲料化处理,将餐厨垃圾收集后粉碎,经过消毒,可用于牲畜的饲料,但是作为牲畜的饲料消毒要达到一定水准,因此作为饲料时要处理全面;第五种是能源化处理,餐厨垃圾的能源化处理主要包括焚烧发电、热分解法、发酵制氢等,能源化处理是近几年兴起的,技术还不成熟。因此,需要更加合理有效的方法来处理餐厨垃圾。
综上,城市可燃固废处理方式应当优先选择循环回收利用,不便于回收利用的再采用能源化处理等手段。
2高炉炼铁协同处理城市可燃固废
2.1高炉炼铁概述
高炉炼铁是目前炼铁的主要方式,以铁矿石、烧结矿、球团矿为含铁原料,以焦炭、煤粉为能源。高炉冶炼过程中,铁矿石、焦炭等原料从高炉炉顶进入高炉,焦炭和铁矿分层交替分布,形成料柱。在高炉下部风口处,鼓入热风,使焦炭燃烧和气化,产生还原气体。还原气体自下而上在高温中还原铁矿石,铁矿石先后经历还原、软化、熔融、滴落4个过程,最终形成渣铁熔体,在出铁口渣铁被分离,形成铁水和高炉渣。
为降低高炉燃料消耗和生产成本,一般在高炉风口喷入煤粉,替代部分焦炭。随着高炉技术的发展和社会固废的不断增多,废塑料等可燃固废作为一种新型的燃料被喷入高炉中,一方面降低了高炉的焦比,另一方面解决了社会固废污染问题。
2.2高炉炼铁协同处理城市可燃固废的研究现状
2.2.1高炉喷吹废塑料
高炉喷吹废塑料技术在国外早已开始研究,在20世纪末,日本和德国就开始对高炉喷吹废塑料进行工业性试验并获得成功[22]。废塑料在焚烧炉中能源利用率仅为30%~40%,而在高炉中的能源利用率可达80%,其中50%发挥还原剂作用。
从环保的角度来看,尽管废塑料中含有生成二噁英等物质的氯源,但高炉喷吹时由于风口温度远远高于二噁英产生的温度,且高炉内的还原气氛不利于二噁英生成,二噁英等剧毒物质的排放量仅为焚烧炉的0.1%~1%[22-23]。另外,高炉喷吹废塑料的处理成本仅为其他处理方法成本的30%~60%[22]。因此,高炉喷吹废塑料不仅可以有效地处理废塑料,缓解了“白色污染”,还可以为高炉提供一种能源,为冶金行业节约能源提供一种途径[24]。
高炉喷吹废塑料是将废塑料作为燃料和还原剂,在2000℃高温和还原气氛下,废塑料发生化学反应释放出大量热量并生成氢气和一氧化碳,用于还原铁矿石,并且在还原过程中再次释放热量,供给高炉使用。
废塑料在喷入高炉之前首先要进行挑选分类,然后进行清洗、干燥等处理,由于废塑料里面含有氯元素,要对废塑料进行脱氯处理后粉碎制成6mm左右的颗粒[25],与煤粉混合后经风口喷入高炉里。高炉喷吹废塑料过程中必须要严格控制氯元素的质量分数,因为氯元素可能导致高炉煤气处理和回收再利用设备的腐蚀问题;高炉在喷吹过程中对喷吹的废塑料也有一定的粒度要求,合理的粒度组成可以有效防止堵枪[26]。
安徽工业大学和宝钢研究院在此方面展开了大量的研究,龙世刚等[4,26-27]通过试验研究了不同制粒条件下制得废塑料粒的特性,试验发现在110℃下采用微热塑化造粒法效果最好;在不同喷枪直径和固气比条件下,对不同种类和粒度的废塑料进行
了热态模拟喷吹试验,发现高炉喷吹废塑料有小概率发生堵枪现象,合理控制粒度是防止高炉堵枪的有效措施之一;还采用热重分析法对废塑料和煤粉的燃烧失重特性进行对比,发现废塑料的燃烧区间更短,着火点更低。
张崇民等[28]利用高炉法比较了高炉中废塑料燃烧与煤粉燃烧的效率,指出废弃塑料的冶金原料化可以将废弃塑料高效转化利用并能降低冶金企业能耗。吴复忠等[29]利用低温还原粉化率试验,表明高炉喷吹煤与废塑料混合燃料时气体成分变化不会影响高炉的顺行。黄志甲等[30]通过计算表明,高炉喷吹废塑料能为钢铁联合企业节能,降低二氧化碳的排放率。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有