采用计算流体力学的方法对电袋复合除尘器的流场进行了模拟计算,通用控制方程的离散采用有限容积法,对流项差分格式采用二阶迎风格式,流体压力-速度耦合基于SIMPLE算法。
采用分区划分网格的方法,对电袋复合除尘器的不同区域进行前处理。划分出了4种不同网格数量,经过计算得出1100万网格与实际出口压力值做比较接近,出口负压为2850Pa,湍流强度I和水力直径d分别见公式(1)和公式(2)。各壁面均设为无滑移壁面,空气密度ρ为1.225kg/m3,黏度μ为2.425x10-5kg/m3;滤料的厚度△m=2mm,渗透率k见公式(3),内部阻力系数C'见公式(4)。
1.2流场测定理论评价指标
由于袋除尘区内部截面各点的气流速度不同,以相对均方根公式(5)作为评价指标,其特点是对速度场的不均匀值反应比较灵敏,其均方根越大,不均匀度越高。
2模拟结果及分析2.1不同过滤速度对内部流场影响
通过比较在不同过滤风速电袋复合除尘器中的速度云图(图2)和流线图(图3),分析不同过滤风速的影响程度。
均匀烟气流进入袋除尘区后,由于袋式除尘器的滤袋区对气流的阻挡作用,使得均匀烟气下行加速,在滤袋与灰斗间的区域形成速度变化梯度较大的不稳定空间。图2(a)是速度为0.8m/min,在Z=2450mm平面区域中滤袋与灰斗间的区域,可以看到烟气的“高速区”。
此区域主要出现在前2个布袋除尘单元以及最后一个单元的前半个区域,后期由于烟气向后输运过程中遇到了除尘室墙面的阻挡作用,形成上升气流,与之前的高速气流叠加,造成了“高速区”的上扬。由于气流速度变化缓慢,滤袋区烟气速度分布均匀,即烟气量较均匀。滤袋底部“高速区”最大气流速度为7.5m/min;滤袋区最大气流速度在后墙上部滤袋处,为5.3m/min,最小气流速度在滤袋区前端1.3m/min。
图2(b)是速度为1.2m/min的云图,电袋复合除尘器内部气流速度等值区出现了明显的分区状态,电除尘区的低速气流区(b-a区)与后部的高速气流区(b-b区)分界明显,并且在后墙上部滤袋处出现了狭长的高速气流区(b-c区),这将增大滤袋负荷的不均匀度,降低高速区滤袋使用寿命。本工况,滤袋底部空间最大气流速度11m/min,滤袋区的最大气流速度同样在后墙上部滤袋处,为8.3m/min,最小气流速度在滤袋区的前端为0.8m/min。速度差较大。
图2(c)是速度为1.6m/min的云图,在此工况下,滤袋下部空间的“高速区”呈带状斜向上延伸至滤袋区后墙出口。在此区域内,气流速度大,气流量大,本工况,滤袋底部空间最大气流速度为15m/min,滤袋区的最大气流速度在后墙中部滤袋处,为10.3m/min,最小气流速度在滤袋区的前端下部,为0.4m/s。速度差值进一步增大。
图2 不同速度Z=2450mm截面速度云图对比
速度为2.0m/min的云图如图2(d)所示,在此工况下电除尘区风速不均匀,出现了下部风速大,上部风速小的情况,这主要是由于随着过滤风速的提高,电除尘区入口风速也相应地提高,导流板及滤袋区的阻力作用显著增加,导致大量烟气流受阻下行的结果。在滤袋区的下部空间依旧形成了“高速区”,最高速度18m/min,且高速区域面积较其他速度相比都大,滤袋底部气流如此高的水平流速将造成滤袋底部损坏。在滤袋区,除第一袋除尘单元中部气流速度较小外,最小速度为0.7m/s,其他部分速度均较高,尤以第二及第三单元为甚,其中最大气流速度出现在靠近后墙的中部,为13m/min。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2022 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ? 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有