3.3 对锅炉着火及稳定性影响
煤粉着火温度为430℃左右,污泥着火温度为230℃左右。如图2所示,着火温度随掺烧比例增加而降低。按照掺烧比例5%考虑,煤粉和干化污泥混合物的着火温度为430℃左右,锅炉内温度可达1000℃,煤中掺入污泥后,对锅炉着火没有影响。
图2 着火温度随污泥掺烧比例的变化曲线
污泥掺混后由于其热值低,含水量较高,掺加量过高可能会影响锅炉火焰的温度水平、影响锅炉燃烧的稳定性和燃烧效率。电厂掺烧污泥后尤其注意对锅炉运行参数的影响,这直接关系到电厂发电机组的安全经济运行,表2为掺烧干化至含水率35%的污泥后 (掺烧比为2.1%) ,锅炉部分运行参数的前后变化。
表2 掺烧污泥前后锅炉运行参数变化
由上表可以看出,掺烧污泥后各项参数的变化很小。由于掺烧污泥后烟气流量少量增加,使得炉膛理论燃烧温度略有上升,但增加幅度不大,低于2℃,排烟温度相比掺烧前升高1.3℃,使得排烟损失略有上升,锅炉效率下降了0.06%。
3.4 对锅炉结渣特性的影响
煤的灰熔点温度要高于纯污泥的灰熔点温度,随着污泥掺烧比例的提高,混合燃料的灰熔点温度逐渐降低,掺烧比过大、污泥含水率过高时会使锅炉更容易结焦。
随着污泥掺烧比例的提高,灰分的特征温度依次降低,煤中掺烧不同比例的污泥灰的熔融特性实验如图3所示。
图3 掺混比例与灰熔点变化图
从图中可见当掺烧比控制在2%以下时,熔点变化非常微弱,不会对锅炉结焦掺烧影响。
3.5 对污染物排放影响
污泥中存有大量氯基物质,当焚烧温度在550℃~700℃时会迅速 (0.1s~0.2s) 产生大量的二噁英。二噁英控制措施主要为保持污泥等废弃物燃烧在850℃以上,烟气停留时间大于2s。锅炉内燃烧温度随高度变化如图4所示。
污泥作为燃料在20m~40m区域送入炉膛内部。燃烧温度远大于850℃,以烟气最大流速12m/s计算,污泥停留在850℃以上区域远大于2s,基本可以遏制二噁英大量生成。
燃煤机组具备完善的烟气净化装置,污泥占耗煤量的10%以内,尾气净化可以正常高效运行。污泥焚烧产生的颗粒物可随同烟气经除尘、脱硫等烟气环保治理设施高效去除。
图4 炉膛温度趋势图
4 结论
(1)“污泥干化+燃煤锅炉焚烧”污泥处理处置方案,充分利用现役燃煤机组高效发电系统和环保治理系统,可以降低污泥焚烧处置成本。
(2)为保证燃煤锅炉稳定运行,建议污泥干化率控制在30~35%、掺烧比例在5%以下。选取适当的污泥入炉位置,可以遏制二噁英大量生成。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有