设计了3种方案(表1),包括在烟道弯头处设置导流板,在反应器本体、首层催化剂层前部设置整流器,构件尺寸及位置如图2和图3所示。
图2各弯头导流板布置
图3 整流器布置
3脱硝反应器CFD模拟
3.1数学模型及边界条件
烟气由反应器入口进入,流量约为350000m3/h,压力为100Pa。经过一段烟道后进入反应器本体,在烟道中与喷氨格栅喷入的氨气混合,烟道截面积及烟气流动方向有变化,因此为三维流动。
在数值模拟中作出如下假设:
(1)气体为理想状态;(2)流动是定常的;(3)系统绝热;(4)不考虑烟气中的粉尘;(5)不考虑反应器内的化学反应。
根据反应器内烟气流动时湍流的状态,计算采用标准k-ε(Standardk-ε)双方程为湍流模型。采用分离求解器计算控制方程,压力-速度耦合采用SIMPLE格式,压力插值采用标准格式Standard,其余对流项插值采用二阶迎风格式Second Order Upwind。
为保证网格质量,对反应器进行分块网格划分,经过网格无关性计算,反应器网格总数约为150万。采用速度入口,进口速度为10m/s,温度为473K;采用压力出口,压力默认为初始值(大气压),温度为463K。
3.2模拟结果与分析
SCR脱硝方法对催化剂的性能要求以及反应器内流场的均布性要求很高,在选取适宜烧结烟气脱硝的低温催化剂后,系统脱硝效率及氨逃逸率基本取决于反应器内流场的均布性。
该模拟主要观察反应器入口、烟道顶部弯折角、反应器本体前部及催化剂首层前部的流场分布,比较不同方案对其的影响,优化内构件布置。
3.2.1导流板对反应器入口流场分布的影响(弯头1)
图4所示为反应器入口的速度云图。
图4 反应器入口速度云图
烟气从水平烟道经过弯头1进入竖直烟道与氨混合,此处易产生速度梯度,从而形成回流,紊乱的气流会对烟气与氨的混合产生影响。
从图中看出,未加导流板(空塔)时,靠近左侧气流速度较大,从烟道左侧至右侧速度梯度较明显,烟道空间没有得到充分利用,且进入竖直烟道后气流较紊乱,流场分布不均匀;加入弧形导流板(方案1)后,烟道左侧仍存在高速区,但速度梯度减小,气流进入竖直烟道后流场分布得到改善;在弧形导流板的基础上加入直板(方案2)后,烟道左侧的高速区消失,烟道左侧至右侧速度梯度进一步减小,烟道空间得到充分利用,竖直烟道流场分布均匀。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有