通烟气后,系统压降( 第一层催化剂入口压力与第三层催化剂出口压力之差: P1-P4) 基本以固定斜率缓慢增加,第 9 天起系统开始喷氨,阻力基本上仍以固定斜率增加,两个小的突变点对应调整烟气量至 25000 m3; 第一层催化剂前后压差( P1-P2)变化( 280 Pa→820 Pa) 是导致压差变大的主要原因,而第二层催化剂前后压差( P2-P3) 和第三层催化剂前后压差( P3-P4) 几乎呈稳定状态,分别在 140 ~ 280 Pa和 190~300 Pa,与设计值相符。可见,喷氨并未对烟气阻力上涨产生影响,烟气中粉尘累积是造成阻力增加的主因,烟气中颗粒物被第一层催化剂截留后,仅靠压缩空气吹灰难以脱除,吹灰效果不理想导致系统阻力持续上升。
由于压差的变化远超设计值,将SCR系统进行停机检修,并对系统积灰情况进行排查,经排查发现每层催化剂上方铁丝网均有不同程度的灰沉积,尤其以第一层催化剂积灰最为明显,而系统出口烟道内壁光滑无积灰,如图 5 所示。
图 5 SCR系统催化剂( 图左) 及出口烟道( 图右) 积灰情况
由于吹灰管路覆盖面积有限,吹灰仅对管路下方积灰清除有效,而未覆盖的铁丝网处积灰较明显,说明单管路吹灰设计不能满足系统的吹灰要求,推测虽然入口粉尘绝对量较小,但粉尘以质轻、粘附性强的活性炭粉为主,吹灰方式的选取需要特别注意; 系统出口烟道无积灰,说明瞬时清灰后,粉尘可以随烟气排出系统。
鉴于吹灰不彻底的现状,对SCR系统进行了声波吹灰器的加装以及原有压缩空气清灰管路的改造,改造后每层催化剂上层均设置一套声波吹灰装置,且在原有 9 路压缩空气吹灰管路下各增加一列 T 型支管,各支管开一定数量的小孔,保证压缩空气吹扫面积覆盖整层催化剂,解决吹灰面积有限的问题,改造实物如图 6 所示。
图 6 SCR系统增设声波吹灰器及压缩空气吹灰改造实物
吹灰改造完成后,效果显著,图 7 为系统运行650 h 催化剂前后压差变化情况,可见吹灰改造后压差控制较为理想,仅在 150~200 h 时间段调整烟气量后压差增加至 920 Pa 左右,压缩空气吹灰后,压差降至 800 Pa 左右,并达到较长期的稳定,说明声波吹灰+压缩空气组合吹灰的效果明显,同时也可推测在低硫、低尘、低温的环境下系统生成的硫铵有限,为进一步开展低温下SCR试验创造了条件。
图 7 系统吹灰改造后催化剂前后压差变化情况
2. 3 系统氨逃逸
试验期间,出口氨逃逸设计值为 3 ppm 以内,但试验过程中发现系统升温降温过程中氨逃逸值出现较大波动导致出口氨难以控制。图 8 所示为烟气温度调整与氨逃逸值历史数据,可见,烟气温度升高后,氨逃逸值瞬间变大,烟气温度降低,氨逃逸值立即降低,烟气温度与出口 NH3浓度相关性较好。
这可能是因为低温下反应器及管道对 NH3的吸附作用明显,导致温度升高后氨大量脱附。因此,当系统开机与或停机检修时需要注意脱硝效果的滞后期以及系统内残留氨的充分释放,另外,需要严格控制烟气温度的变化及喷氨量。
图 8 SCR系统烟气温度调整及氨逃逸历史曲线
3 结 论
1)低硫、低尘环境下,低温SCR脱硝表现出较好的NOx脱除能力,活性炭法+低温SCR有望成为烧结烟气超低排放改造经济可行的方案之一。
2) 低温下SCR反应对环境的要求严苛,可继续探索低温高硫环境下催化剂抗 SO2、抗 H2O 中毒能力及机理等,不断完善低温SCR应用基础科研工作。
3) 活性炭法耦合低温SCR工艺,对于具有质轻、粘附性强等特点的活性炭粉,声波吹灰+压缩空气吹灰可作为一种较优的吹灰组合工艺。
4) 低温下SCR系统对 NH3的吸脱附作用明显,烟气温度波动导致 NH3逃逸的变化显著,工程控制中需严格控制喷氨量和烟气温度。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有