北极星

搜索历史清空

  • 水处理
您的位置:环保固废处理垃圾处理工业固废评论正文

生物质气化技术及产业发展分析

2020-04-03 15:06来源:新能源进展作者:刘华财 吴创之 谢建军 黄艳琴 郎林 杨文申 阴秀丽关键词:生物质气化节能减排工业有机固废收藏点赞

投稿

我要投稿

广州能源研究所在生物质气化−内燃机发电/CHP方面处于国内领先水平,已推广生物质气化发电/CHP系统近30套。2005−2006年,在国家863计划支持下,建成国内首个生物质气化内燃机−蒸汽轮机联合循环发电示范工程(图3a),系统装机规模为4.5MWe(内燃机组)+1.5MWe(汽轮机组),发电效率超过26%;2012−2014年,在国家科技支撑计划的支持下,建成“2MWe生物质气化发电及热气联供系统(图3b)”,研制出了发电效率为34.5%的8300D/M-2非增压型500kWe低热值生物质燃气内燃机,示范系统发电效率为25.5%,CHP综合热效率为52.3%;目前,在国家重点研发计划项目支持下,计划建设2MWe生物质气化发电和热气联供示范系统,将机组发电效率提高到35%以上,系统发电效率≥27%,热电联供总热效率≥50%,目前已完成选址和设计,进入装置研发和加工阶段。

5_副本.jpg

2.3生物质整体气化联合循环

IGCC将布雷顿循环和朗肯环联合(图4),具有较高的发电效率。BIGCC是20世纪90年代的研究热点,最初目的是为了更高效地利用甘蔗渣,目前仍处于发展完善阶段,中国在这方面的研究几乎空白。BIGCC可通过内燃和外燃两种方式实现,内燃方式是燃气和空气在燃烧器混合燃烧生成高温高压烟气,进入到透平中膨胀做功;外燃是燃气与空气混合燃烧后,通过换热器将热量供给压缩空气,吸热后的高温高压空气进入到透平中膨胀做功。外燃方式对燃气质量要求不高,也不需要高压燃烧,燃气净化成本和压缩能耗较低,但投资成本较高,高温换热器等技术难题未攻克。内燃方式对燃气(表2)的焦油、颗粒物和碱金属含量要求非常高,以避免气轮机叶片出现磨损、腐蚀和沉积;燃气需要增压后(一般0.7MPa以上)进入燃烧器燃烧,而生物质燃气热值低、体积流量大,增加了压缩能耗和成本,加压气化可以避免该问题,但增加了气化炉进料和燃气净化的难度。

瑞典Varnamo电厂是世界上首座BIGCC电厂,发电净效率为32%。电厂采用FosterWheeler公司的加压循环流化床气化技术,以空气为气化剂,燃气经冷却器冷却至350~400℃后,由高温管式过滤器净化。电厂1995年开始正式运行,系统整体运行时间超过3600h,其中加压气化炉运行时间超过8500h,验证了生物质加压气化和燃气高温净化系统的可行性,获得了宝贵的运行经验。由于运行成本过高,该项目于2000年停止运行。其他BIGCC示范项目见表3,有四个项目采用了瑞典TPS的常压CFB气化技术,这些示范工程目前都已停止运行。

2.4生物质气化燃煤耦合发电

生物质气化燃煤耦合发电是将生物质在气化炉中转化为燃气,燃气再送入燃煤锅炉与煤混合燃烧发电,如图5。

8_副本.jpg

该技术也称间接混燃,也适用于以油、天然气为燃料的火电厂。需要在燃煤锅炉设备基础上增加独立的生物质气化系统,并根据生物质燃气在锅炉内的燃烧段位置增加燃气燃烧器或局部改造原有的煤粉燃烧器。从气化炉出来的高温燃气直接进入锅炉燃烧,燃气显热和焦油的能量得到充分利用。该技术可以利用现役大容量、高效率燃煤机组,发电效率可达40%~46%,依托燃煤热电联产机组发电并供热,综合能源利用效率可达到70%以上。生物质气化燃煤耦合发电技术可以充分发挥大型燃煤发电机组的优势,而且初投资成本较低、建设周期短、生物质利用规模灵活、可针对煤和生物质价格波动进行自身调节,对生物质价格控制力强,是生物质最高效、经济的利用方式之一。与生物质/煤直接混燃技术相比,其优势在于燃煤锅炉腐蚀和沉积的风险较小、对尾气处理系统无影响、生物质灰和煤灰可分别处理,能够利用的原料范围更广。

9_副本.jpg

目前生物质气化燃煤耦合发电项目并不多,如表4。国内第一个气化耦合项目是国电荆门电厂660MWe机组生物质气化耦合燃烧发电项目,气化炉处理量为8t/h,生物质燃气耦合发电部分为10.8MWe。该项目于2013年10月正式投运,截至2015年11月,累计实现上网电量15157万kW·h,综合利用秸秆104685t。该项目获得了与生物质直燃电厂同等的生物质发电上网电价。为鼓励生物质燃煤耦合技术发展,2018年6月21日,国家能源局、生态环境部联合下发了《关于燃煤耦合生物质发电技改试点项目建设的通知》,明确了84个试点项目,其中生物质气化燃煤耦合发电项目54个,占比64.3%,涵盖全国18个省和直辖市,反映出市场对发展生物质气化燃煤耦合发电的广泛认可。但与此同时,《关于公布可再生能源电价附加资金补助目录(第七批)的通知》将燃煤耦合生物质发电排除在补贴范围外。

2.5生物质气化−燃料电池发电

固体氧化物燃料电池(solid Oxide fuel cell,SOFC)技术突破和规模化发展为生物质高效分布式发电提供了一条可行途径。SOFC在高温下直接将燃料的化学能转化为电能,发电效率可高达60%;对燃料适应性比较强,气化燃气中可燃组分(H2、CO和CH4)均可作为燃料,且发电效率不受规模影响,适合分布式发电应用。生物质气化SOFC发电流程见图6。

10_副本.jpg

生物质气化SOFC发电最早在20世纪80年代被提出。近几年,随着气化技术和燃料电池技术的发展,二者耦合发电再次在国际上受到广泛关注,但相关研究仍处于起步阶段,现有的研究大多集中在生物质气化-SOFC系统的模拟计算[66-68],实验研究尤其是以真实生物质气化燃气作为SOFC燃料的研究很少,仅有的实验研究多集中在欧洲。奥地利Güssing示范工程[69]将快速内循环流化床水蒸气气化燃气与SOFC联合运行26h,结果显示SOFC输出电压一直保持稳定;荷兰能源研究中心[70]将两段式气化燃气与小型SOFC电池堆(5~30组电池,350W,SulzerHEXIS)联合起来运行48~250h,得到系统发电效率为36%~41%;雅典国家技术大学的HOFMANN等[71]考察了平板型SOFC耦合生物质气化燃气时的运行性能,其中气化工艺采用丹麦理工大学开发的两段式气化炉连续运行了150h后电池无压降,验证了生物质气化燃气耦合SOFC运行的可行性。

总的来说,现阶段生物质气化SOFC发电在世界范围内研究差别不大,中国可以利用研究积累和核心技术,开展生物质气化耦合SOFC发电的研究,为生物质高效分布式发电应用提供技术储备。该技术研究将不仅有利于岛屿、边远山区和农村地区的经济发展,同时还可带来可观的环境效益,在中国具有良好的发展前景。

2.6生物质气化合成

近年来,欧美等发达国家的众多跨国公司和科研单位相继开展了生物质气化合成液体燃料的研究工作,建立了多套示范装置[1,72]:德国科林公司(Choren)和林德集团(Linde)合作,在芬兰Kemi建设了一座年消耗林业废弃物1.2×106t、年产1.3×105t生物质合成柴油/石脑油的工厂;德国卡尔斯鲁厄理工学院和鲁奇公司(Lurgi)建立了BTL合成汽油中试厂,以林木剩余物、秸秆和油棕树叶为原料,日产生物合成汽油2t;瑞典Chemrec公司在瑞典北部Pitea建立了年产1800t甲醇和二甲醚的造纸黑液气化合成车用燃料示范系统。此外,还有美国的Hynol Process示范工程、美国可再生能源实验室的生物质制甲醇项目和日本三菱重工的MHI生物质气化合成甲醇系统等[73]。最近,DIMITRIOU等[74]计算分析了6种不同BTL气化合成系统的能效(37.9%~47.6%)和液体燃料生产成本(17.88~25.41€/GJ),其中费托合成工艺最接近传统石油化工生产成本,且考虑到传统生产中逐渐增加的环保成本,生物燃料在未来将更具备竞争优势。

近几年,中国虽然在生物质气化技术上有较大发展,催化合成工业也逐渐成熟,但有关生物质气化合成液体燃料技术的研究尚处于起步阶段,仅有河南农业大学、浙江大学、中国科技大学、中国科学院青岛生物能源与过程研究所、中国科学院广州能源研究所等为数不多科研机构的研究报道,产品主要为汽柴油、二甲醚和低碳混合醇等。广州能源研究所在国家“十五”863计划支持下,较早开展了生物质气化合成含氧液体燃料的实验研究[75];“十一五”期间在国家863计划、国际合作及中国科学院知识创新项目的支持下,建立了百吨级生物质气化合成二甲醚的评价系统和中试装置;“十二五”期间在国家科技计划项目的支持下,建成了千吨级生物质气化合成醇醚燃料示范示范系统(图7),并开发出具有自主知识产权的万吨级工艺包。

11_副本.jpg

3中国生物质气化产业发展定位

中国生物质能利用技术多种多样,目前产业仍不成熟,但坚持分布式发展是今后的方向。需要根据技术特点、市场需求,明确其发展定位。结合前述分析,中国生物质气化产业的基本定位如下。

(1)部分替代燃煤、燃气,建设分散工业供热、供气系统,满足分散、小规模燃煤燃气用户需求,推进国家节能减排计划。

生物质能源产业具有良好的经济效益、生态效益和社会效益。中国CO2减排压力巨大,分散燃煤造成的雾霾等环境问题日益严重,降低化石能源比例、减少燃煤污染是中国能源发展中相当长时期内的核心任务。生物质气化利用技术可实现在终端用户部分替代燃煤和天然气,例如利用生物质为企业分散供热、将生物质气化燃烧系统应用于工业窑炉等,将生物质能利用与节能减排工作有机结合,为可燃固体废弃物处理和高耗能行业节能减排开辟了新的方法和途径。

(2)建设村镇规模的分布式生物质气化多联供系统,为国家新型城镇化战略提供支撑。

生物质能是分散的地域性能源,主要分布在农村地区。中国农村经济发展极不平衡。一方面,经济发达地区的农民使用洁净的电能、液化气等商品能源,将富余的秸秆在田间焚烧,造成极大的环境污染;另一方面,仍有边远地区没有电力供应,生活用能没有保障。根据当地需求,发展生物质能分布式气化多联供产业,提供热、电、燃气、活性炭、土壤改良剂等产品,可以有效替代高污染、高排放的化石燃料及其产品,资源化利用有机固体废弃物,有利于建立资源节约型和环境友好型社会,促进人与自然的和谐发展及经济社会的可持续发展。

(3)气化合成液体燃料和化工品,部分替代石油工业产品,服务国家能源发展战略。

从长远看,应重点研发利用农林废弃物等纤维素类生物质气化合成燃料及化工品。化石能源尤其是石油资源严重不足、能源结构失衡,已威胁到中国的能源安全和经济社会的可持续发展。生物质作为唯一一种能直接转化为液体燃料的可再生能源,可以缓解中国对进口石油的依赖,而且能够大幅度减少温室气体的排放,是生物质利用的跨越式发展,其研究和开发也是世界各国可再生能源发展的热点和焦点。

投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

生物质气化查看更多>节能减排查看更多>工业有机固废查看更多>