北极星

搜索历史清空

  • 水处理
您的位置:环保大气治理脱硫脱硝技术正文

【技术】湿式氧化法脱硫工艺设备选择及操作管理的优化

2015-10-08 09:29来源:东狮脱硫技术协作网微信关键词:脱硫技术湿式氧化法脱硫脱硫塔收藏点赞

投稿

我要投稿

3.2脱硫溶液优化管理

溶液组分控制及管理对于以洗涤为手段的介质来说非常重要,因此必须了解相关物质的溶解度,掌握各组分在实际应用中所起的作用,如何调控等。

溶液吸收H2S为酸碱中和反应。因此,溶液的总碱度和Na2CO3浓度是影响吸收过程的主要因素。气体净化度,溶液的硫容量,总传质系数,随Na2CO3浓度的增加而增大。碱度越高,PH值越大,随CO2增高而降低,PH值低于8.0腐蚀严重,高于9.2副盐增长快。须保持溶液中碳酸氢钠和碳酸钠的浓度比(呈反比,一般控制在4-6),形成缓冲液,更具稳定性。888催化剂主要起析硫再生作用,提高反应速度,降低活化能,改善工作硫容,使脱硫液保持高频高效吸收。因此,调整好脱硫溶液各组分的浓度,才能保证良好的工作状态。

有些厂家根本不做分析或仅做一个总碱度,怎么优化?因此,要建立完整的分析制度,以分析数据来指导生产。定期比较,总结优化。管理要落在实处。工况被破坏潜伏期较长,恢复调优极不容易,故时刻都要注意细微变化做到心中有数,作预见性调节。一般总碱度,控制在22-26g/L操作弹性大,吸收效果好。低于0.3mol以下便不好提高,若副盐高,PH值低,总碱度长时拉不起来,注意不能突击加碱,最好分班均匀补加,增量不要超过一倍。可适当补充点氨会较快恢复。若溶液受到污染,颜色发黑,就要置换部分溶液再调整。888浓度控制也一样,每天补充量要与硫负荷,工况加以平衡,要以指标为限。配制使用要确保活化时间,按时定量,均匀补充滴加。各组分浓度不能波动太大,要使之逐步形成良性循环。要严格控制悬浮硫,经常关注副盐的增长速率及硫黄回收率和泡沫情况,以及溶液颜色变化等等,确保脱硫液质量。

3.3溶液循环量调控

在正常生产操作中调整好溶液中碱度,催化剂浓度并保持各组分控制在指标内。还须根据生产负荷和H2S进出口变化来调整溶液循环量(称正常生产三要素)。循环量不但能促进溶液质和量的转换,以达到净化目的,也是降耗的主要因素。但与设备的配置关系密切。因此,循环量的确定不单是以溶液工作硫容来计算,还应兼顾液气比,喷淋密度和溶液在再生槽内停留时间等,来综合考虑。在设备允许的情况下,适当提高循环量是有好处的。因为在所有反应变化中还有一个物料平衡关系。若塔内反应生成物如单质硫不能及时随溶液转移出来。势必会滞留在设备,填料中造成阻塞。循环量不宜频繁调节,系统溶液总量要保持相对稳定,变化太大一定要寻找原因,予以解决。

3.4控制好操作温度

操作温度的调控优化十分重要。脱硫和析硫、再生、回收三个工艺环节的温度调控影响化学平衡等化学反应以及传质、浮选等物理过程及各种物质溶解度,而且若用氨水脱硫,只有解决了温度问题才能控制好碱度。脱硫吸收是放热反应,降低温度对吸收有利,再生则随着温度的升高而加快及盐类分解。因此,脱硫、再生,温度应该是一条曲线。用Na2CO3做碱源,吸收温度应控制在30-38℃。再生温度控制在35-42℃为宜(适宜的再生温度为38℃)。当脱硫温度过低时,吸收和析硫反应速度降低(亦不利于水平衡),可能会出现碱、盐结晶析出,增加碱耗和阻力增高,再生不完全,影响贫液质量。若溶液温度过高,则H2S气体在脱硫液中溶解度降低,使吸收推动力变小(分压差降低),影响气体净化度。同时,再生过程会影响硫结晶增大和聚合力。会使硫泡沫内的空气膨胀,导致泡沫破裂形成不了泡沫层,溶液粘度增大,表面张力下降,对元素硫的浮选及分离转移不利。而且当温度在45℃以上时,副反应明显加快,超过50℃,便会急剧上升。再者,液温过高还会使溶液溶解O2的能力下降,不利于催化剂吸氧再生。且溶液的腐蚀性也随温度升高而加剧。

3.5加强再生氧化槽操作管理

喷射再生氧化槽的功能有三个:①在空气鼓动下,将元素硫浮选出来,分离出去;②催化剂吸O2再生,恢复活性;③进一步析硫再生和使CO2等废气解释弛放,以提高PH值、碱度和减少悬浮硫的含量。然而影响再生的因素主要是空气、温度和溶液在再生槽内的停留时间。最直观的是硫泡沫形成的好坏。温度和停留时间前面以讲过,重点谈谈再生空气。对其有空气量和吹风强度的双重要求。理论上每氧化一公斤H2S需要空气量为1.57m3。实际操作中空气用量是理论量的8-15倍(以满足浮选要求),空气量的大小是由喷射器气液比决定的,即喷射器液相压力(液速要求达到18-25m/s)和喷射器工艺状况(值得注意的是喷射器空气入口应该能调节,而且必须吸取新鲜空气,有的厂为防止反喷改成吸废气)。满足催化剂吸氧再生所需要的氧没问题。而吹风强度则影响再生硫浮选和泡沫层聚合形成。再生槽直径大或喷射器开的多,强度降低(再生槽吹风强度要求60-80m3/m2h)。吹风强度过低,溶液不湍动,则浮选不出硫来。若液面翻腾跳跃,吹风强度太大,又容易将聚合的硫泡沫打碎,造成返混,影响贫液质量。若空气量长期过大或溶液在再生槽停留时间太长,则溶液电位偏高。会使副反应加快。另外,泡沫硫的分离转移也有讲究:若分离太彻底(溢流量太大),则泡沫层不易形成,集硫少且泡沫很虚,应适当保留部分泡沫层有依托,沾的硫会更多,回收更实。若分离量太小或长时间不溢流,则表面得不到更新,也容易造成返混,悬浮硫增多。故液面高度控制应低于硫泡沫溢硫面10-20公分,让硫泡沫连续自由溢硫最好。也可以采用间歇式溢流,但每3-4个小时必须溢硫一次,关键是液位调节操作要心中有数,一般硫泡沫溢流面能占1/2以上即可。(连续熔硫没有滤清过程,溢硫携带清液过多,做的是无用功,浪费蒸汽)。强化再生槽操作管理,要设岗。要学会观察硫泡沫质量和颜色(好的硫泡沫大小适中、均匀、有质感)。再生后溶液应清彻透亮(可在液位调节器处观察),发现再生液或硫泡沫发黑或乳化,要迅速处理。除此之外,温度、碱度和催化剂含量过低或过高都会影响硫泡沫生成和浮选再生。总之,再生的目的就是增强脱硫液活性,降低悬浮硫,提高贫液质量。故再生槽的操作管理不但关系元素硫的浮选、分离、回收,更是预防堵塔的重要措施,是工艺操作的重中之重。

3.6强化回收熔硫,优化再生

回收熔硫就是将分离出的硫泡沫浓缩加工,通常指硫泡沫的收集,过滤和熔硫得到副产品硫黄及残液的处理回收。大体可归纳为两大类;一种方法是将收集的硫泡沫过滤成硫膏或压滤成硫滤饼,清液可直接回收至贫液槽。另一种方法是使用熔硫釜熔炼成硫黄。此种方法有两种形式:连续熔硫和间歇式熔硫。后者的优势是节省蒸汽,熔硫后残液少,对脱硫液质量影响不大,不干扰再生。若使用间歇式熔硫,可根据硫的加温过程的物态变化,将泡沫槽(高位槽)的硫泡沫加温至65-70℃,静置半小时,分层后中间清液放回富液槽,上层和底部的泡沫硫进入熔硫釜熔炼。连续熔硫最重要的是要控制好进液量,注意蒸汽压力与熔硫温度的最佳配合,一般熔硫釜中心温度控制在120-140℃,残液出口温度控制在85-95℃。要根据生产负荷,合理安排,精心操作。进行不断地摸索找出规律,如通过残液的排放量及颜色判断其工作状况。要维护好熔硫装置,发挥最佳的生产能力。需定期排放硫渣,保证其传热效果(有的厂改饱和蒸汽为过热蒸汽,效果很好),总之,在净化脱硫过程中,煤气中所夹带的杂质、赃物和生产中产生的废弃物,只能通过硫泡沫带出系统外。

故在加工硫黄的同时,也净化系统自身,是维护系统正常稳定,有序运行的重要环节。硫黄回收率要求达到80%以上。

残液处理到位也是一个十分重要的问题,不少厂家生产不稳定,硫泡沫不好,系统阻力增加,堵塔,也是因此而造成的。最简单的办法是进行多级沉降过滤处理:将温度降下来,使副盐、硫渣、杂质、赃物等沉淀,(关键是空间和时间,沉淀物、饱和液要定期清除),再经过滤使其变成温度不高、无杂质的清液(要求悬浮物<2g/L温度<50℃)方能返回系统,否则会干扰再生,出硫泡沫不正常,还会增加消耗,增大系统阻力。

其实生产过程就是一个不断优化工艺条件和操作管理的过程,因此,要不断探索,与时俱进,以科学发展观来认真对待。

原标题:湿式氧化法脱硫工艺设备选择及操作管理的优化
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

脱硫技术查看更多>湿式氧化法脱硫查看更多>脱硫塔查看更多>