登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
电镀行业产生的废水中含有大量的重金属离子,包括Cr、Cu、Ni、Cd、Pb、Zn 等。研究表明,这些金属的氧化物及其他形式的化合物具有不同的毒性,如不经处理直接排放到水体中,会对环境及人体产生危害。目前,对于电镀废水中重金属离子的处理以化学沉淀法为主,如碱沉淀法、硫化物沉淀法等。由于S2-能与Ni、Cu、Cd、Pb、Zn 等金属的离子形成难溶硫化物沉淀,将其用于去除废水中的重金属离子可得到较好的处理效果〔1, 2〕;同时,硫化物也可作为一种还原剂,将废水中的Cr(Ⅵ)还原为Cr(Ⅲ),进而在碱性条件下生成Cr(OH)3沉淀而去除〔3〕。因此,硫化物法是一种良好的电镀废水处理方法。传统的硫化物法主要采用硫化钠或硫化钙,为了能够将重金属离子沉淀完全,所加入的硫化钠或硫化钙相对于重金属离子需过量,而过量的S2-也是国家废水排放标准中明确限制的一种有害物质。因此,采用可溶性的硫化钠或硫化钙处理重金属废水,还需对残留的S2-作进一步的处理,程序相对繁琐。若采用难溶的硫化亚铁,则可避免残留S2-的影响。关于硫化亚铁在废水处理中的应用,国内外已有报道〔1, 2, 3, 4, 5〕。笔者采用均相沉淀法制备了纳米FeS 溶胶,研究了采用纳米FeS 溶胶处理模拟电镀废水的最佳实验条件。
1 实验部分
1.1 实验材料
仪器:T6 紫外可见分光光度计;TAS-986 原子吸收分光光度计(北京普析通用仪器有限责任公司);pHS-3C 型酸度计(上海雷磁仪器厂);分析天平;磁力搅拌器。
试剂:金属铜,光谱纯;金属镍,光谱纯;纳米FeS 溶胶(自制);实验所用其他试剂均为分析纯。
实验废水:实验废水采用模拟废水,其中含Cr(Ⅵ)50 mg/L、Ni2+ 50 mg/L、Cu2+50 mg/L、乙二胺四乙酸二钠(EDTA)5 mg/L、酒石酸钾钠5 mg/L。
1.2 纳米FeS 溶胶的制备
于500 mL 三颈瓶中加入100 mL 浓度为0.4mol/L 的硫酸亚铁铵溶液,再加入10.0 g 柠檬酸三钠固体,搅拌至溶解,然后加入100 mL 浓度为0.4 mol/L的硫代乙酰胺以及50 mL pH=9.0 的缓冲溶液。在N2气氛保护下,加热至70 ℃,反应4 h。反应结束后,将产物离心分离,水洗,以质量分数为1%聚乙烯醇为分散介质,制成质量分数为10%的纳米FeS 溶胶〔6〕。
1.3 分析方法
铬(Ⅵ)的测定采用二苯碳酰二肼分光光度法(GB 7467—1987); 铜的测定采用火焰原子吸收分光光度法(GB 7475—1987);镍的测定采用火焰原子吸收分光光度法(GB 11912—1989)。
2 结果与讨论
2.1 纳米FeS 溶胶用量对处理效果的影响
取200 mL 模拟废水于250 mL 烧杯中,以1.0mol/L 硫酸溶液调节pH 为4.0,分别加入1.0、2.0、2.5、3.0、3.5、4.0 g/L 10%的纳米FeS 溶胶,置于磁力搅拌器上搅拌15 min; 以2.0 mol/L NaOH 溶液调节pH 为8.0,加入1 mL 质量分数为0.5%的聚丙烯酰胺(PAM)溶液,静置5 min,滤纸过滤,测定滤液中的金属离子浓度。
由于Ksp (CuS) =6.3×10-36,Ksp (NiS) =1.1×10-24,Ksp(FeS)=6.3×10-18,通过沉淀转化,纳米FeS 能与溶液中的Cu2+、Ni2+反应生成CuS、NiS 沉淀,由于Ksp(CuS)小于Ksp(NiS),CuS 比NiS 更易生成,因此,在纳米FeS 溶胶用量不足时,溶液中Ni2+的残留浓度较大。
纳米FeS 溶胶能优先去除废水中的Cr(Ⅵ),主要原因为无论是FeS,还是沉淀转化反应所生成的CuS、NiS 均具有还原性,能将Cr(Ⅵ)还原成Cr(Ⅲ),进而在碱性条件下形成Cr(OH)3沉淀而去除。当纳米FeS 溶胶投加量达到2.5 g/L(即理论用量的1.2 倍)时,处理后废水中的Cr(Ⅵ)、Cu2+、Ni2+均能达到国家电镀废水排放标准〔7〕要求。由实验结果可知,纳米FeS 溶胶的最佳投加量为2.5~3.0 g/L(即理论用量的1.2~1.5 倍)。
2.2 pH 对处理效果的影响
取200 mL 模拟废水于250 mL 烧杯中,以1.0mol/L 硫酸溶液和/或2.0 mol/L NaOH 溶液分别调节pH 至3.0、4.0、6.0、8.0,加入3.0 g/L 10%的纳米FeS溶胶,置于磁力搅拌器上搅拌15 min; 调节pH 为8.0,加入1 mL 0.5% 的PAM 溶液,静置5 min,滤纸过滤,测定滤液中的金属离子浓度。
通常情况下,含Cr(Ⅵ)、Cu2+、Ni2+的电镀综合废水呈酸性,pH 一般为3~6,另外当pH<3.0 时,由于酸性太强,可能导致FeS 分解而生成H2S 逸出。因此,实验选择的pH 范围为3.0~8.0。由图 2 可知,在弱酸性(pH 为3.0~6.0)条件下,纳米FeS 溶胶对含Cr(Ⅵ)、Cu2+、Ni2+的电镀综合废水具有良好的处理效果,处理后废水中残留的重金属离子已达到国家电镀废水排放标准要求。当pH 为8.0 时,由于碱性条件下纳米FeS 溶胶还原Cr(Ⅵ)的速度较慢,导致处理后废水中Cr(Ⅵ) 的残留浓度较高;另外,EDTA等络合剂在碱性条件下的配位能力增强,从而影响了Cu2+、Ni2+与纳米FeS 溶胶形成硫化物沉淀,导致Cu2+、Ni2+也有一定程度的残留。因此,纳米FeS 溶胶处理含Cr(Ⅵ)、Cu2+、Ni2+的电镀综合废水的最佳pH为3.0~6.0。
2.3 反应时间对处理效果的影响
取200 mL 模拟废水于250 mL 烧杯中,调节pH为4.0,加入3.0 g/L 10% 的纳米FeS 溶胶,分别置于磁力搅拌器上搅拌5、10、15、20 min; 调节pH 为8.0,加入1 mL 0.5% 的PAM 溶液,静置5 min,滤纸过滤,测定滤液中的金属离子浓度。
随着反应时间的增长,重金属离子的残留浓度降低。其中Cr(Ⅵ)受反应时间的影响较大,主要是因为氧化还原反应的速度相对较慢所致。当反应时间达到10 min 后,处理后废水中残留的Cr(Ⅵ)、Cu2+、Ni2+均达到国家电镀废水排放标准要求。因此,采用纳米FeS 溶胶处理含Cr(Ⅵ)、Cu2+、Ni2+的电镀综合废水的最佳反应时间为10~15 min。
2.4 氢氧化钠和纳米FeS 溶胶的处理效果对比
氢氧化钠法:取200 mL 模拟废水于250 mL 烧杯中,以1.0 mol/L 硫酸溶液调节pH 为2~3,加入焦亚硫酸钠( 还原剂),至ORP 为250~300 mV,将Cr(Ⅵ)还原为Cr(Ⅲ);以2.0 mol/L NaOH 溶液调节pH 为8.0,加入1 mL 0.5%的PAM 溶液,静置5 min,滤纸过滤,测定滤液中的金属离子浓度。
纳米FeS 溶胶法:取200 mL 模拟废水于250 mL烧杯中,调节pH 为4.0,加入3.0 g/L 10%的纳米FeS 溶胶,置于磁力搅拌器上搅拌15 min; 以2.0mol/L NaOH 溶液调节pH 为8.0,加入1 mL 0.5% 的PAM 溶液,静置5 min,滤纸过滤,测定滤液中的金属离子浓度。
采用氢氧化钠沉淀金属离子,当pH 为8.0 时,Ni2+不能沉淀完全(理论上,Ni2+沉淀完全的pH 需大于9.5);将pH 调高至10 以上,对Cu2+、Ni2+的沉淀有利,但Cr(Ⅲ)会出现返溶而超标。由于不同金属离子对形成氢氧化物沉淀的pH 要求不同,在某一固定的pH 下沉淀多种金属离子,难以同时处理达标。其次,电镀废水都一定程度地含有EDTA、柠檬酸钠、氨三乙酸等络合剂,单独采用氢氧化钠处理时,金属离子难以完全形成氢氧化物沉淀,从而导致处理后废水中Cu2+、Ni2+等重金属离子不能达到电镀废水排放标准的要求。此外,当废水中含Cr(Ⅵ)时,需要先将pH 调到2~3,控制ORP 电位,加入焦亚硫酸钠等还原剂进行还原处理后,再加碱进行沉淀,处理工艺过程相对繁琐。
采用纳米FeS 溶胶在弱酸性条件下处理废水时,通过沉淀转化FeS 与溶液中的Cu2+、Ni2+等重金属离子形成CuS、NiS 等难溶的硫化物沉淀,Cu2+、Ni2+等重金属离子的硫化物溶度积比其氢氧化物溶度积小很多,这对处理废水中的重金属是比较有利的;同时,纳米FeS 溶胶中分解出的Fe2+能与EDTA等络合剂结合,有效地减小或消除了络合剂的影响。而且,纳米FeS 溶胶具有还原性,且反应活性强,能直接将废水中的Cr(Ⅵ)还原成Cr(Ⅲ),处理工艺过程相对简易。因此,与碱沉淀法相比,采用纳米FeS溶胶处理含Cr(Ⅵ)、Cu2+、Ni2+的电镀废水具有明显的优势。
3 结论
(1)采用纳米FeS 溶胶处理含Cr(Ⅵ)、Cu2+、Ni2+的电镀废水,当pH 为3~6,纳米FeS 溶胶投加量为理论用量的1.2~1.5 倍,反应时间为10~15 min 时,处理后废水中的Cr(Ⅵ)、Cu2+、Ni2+均低于0.5 mg/L,达到国家电镀废水排放标准要求。
(2)纳米FeS 溶胶兼有沉淀剂和还原剂2 种功能,能同时处理电镀废水中的Cr(Ⅵ)和Cu2+、Ni2+等重金属离子。
(3)纳米FeS 溶胶对含Cr(Ⅵ)、Cu2+、Ni2+的电镀废水的处理效果受pH 影响较小,能直接应用于弱酸性废水的处理。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星售电网获悉,3月20日,上海市经济信息化委发布关于开展2025年度工业和信息化领域绿色低碳技术产品征集工作的通知。文件明确,根据《上海市工业通信业节能减排和合同能源管理专项扶持办法》(沪经信规范〔2023〕5号)的通知的要求,对实现工艺突破或流程再造,以及企业首次应用绿色低碳新技术、新
近日,安徽省生态环境厅、安徽省市场监督管理局联合发布了安徽省地方标准《电镀水污染物排放标准》(以下简称《标准》),标准号DB34/4966-2024,2024年12月1日起实施。《标准》适用于电镀排污单位和专门处理电镀废水的集中式污水处理厂水污染物的排放管理、排污许可管理、建设项目环境影响评价、建设
中国西部与国际绿色低碳技术交流的平台2025年4月1-3日成都世纪城新国际会展中心为助力企业把握绿色低碳高质量发展大势,推动国际绿色技术交流,由中国环境保护产业协会指导,四川省环境保护产业协会、意大利展览集团和成都华意中联展览有限公司联合主办的ECOMONDOCHINA-CDEPE成都国际环保博览会将于202
生态环境部公布第十九批生态环境执法典型案例(举报奖励领域):2020年以来,生态环境部指导各地按照《关于实施生态环境违法行为举报奖励制度的指导意见》有关要求,建立实施生态环境违法行为举报奖励制度,充分调动广大人民群众参与生态环境保护工作的积极性,发挥内部人举报、重奖举报等机制作用,切
北极星环保网获悉,湖南省工信厅发布关于征集湖南省工业领域鼓励发展的绿色低碳先进适用技术、装备和产品目录(第二批)的通知,其中先进环保领域包括大气污染防治、水污染防治、土壤污染修复、固体废物处理、噪声与振动控制、环境监测专用仪器仪表、环境污染防治专用材料和药剂、环境污染应急处理、环
上海市经济信息化委发布关于开展2024年度绿色低碳技术产品征集工作的通知,征集范围包含工业绿色低碳技术、信息化领域绿色低碳技术、高效节能装备、绿色低碳环保装备等四大类,具备能效水平先进、技术成熟可靠、经济效益好、推广潜力大等特点,特别是推荐一批达到国际领先水平,能够实现全流程系统节能
新能源汽车配套绿色表面处理产业园是安徽乃至华东区域首个电镀废水零排放项目,也是我市重点工程项目之一。该项目自2023年12月2日开工以来,施工进度有序推进,我们一起去现场看一看。记者在现场看到,新能源汽车配套绿色表面处理产业园开工一个多月来,施工方完成了场地平整、桩基施工、基槽验收、承
近日,湖南省工业和信息化厅发布关于征集湖南省工业领域鼓励发展的绿色低碳先进适用技术、装备和产品目录的通知,通知显示,聚焦推进湖南省“4×4”现代化产业体系建设,围绕钢铁、有色金属、石化化工、建材、汽车、新能源、电子信息、装备制造、食品加工、轻工纺织、先进材料、生物医药等重点行业,征
湖南省工业和信息化厅发文,征集湖南省工业领域鼓励发展的绿色低碳先进适用技术、装备和产品目录,聚焦推进湖南省“4×4”现代化产业体系建设,围绕钢铁、有色金属、石化化工、建材、汽车、新能源、电子信息、装备制造、食品加工、轻工纺织、先进材料、生物医药等重点行业,征集工业节能、信息化领域节
安徽省市场监督管理局发布《电镀水污染物排放标准》,并公开征求意见。本文件规定了电镀排污单位和专门处理电镀废水的集中式污水处理厂水污染物的排放限值、监测和监控要求等内容。适用于现有电镀排污单位和专门处理电镀废水的集中式污水处理厂的水污染物排放管理,以及电镀排污单位和专门处理电镀废水
12月20日,新余市电镀集控区污水处理中心二期项目正式开工。作为新余市电镀公共服务平台的重要组成部分,该项目旨在提高园区的环保水平,促进可持续发展。园区将采用先进的污水处理技术和设备,对电镀废水进行高效处理,确保达标排放,有效防止水资源的污染,保障周边环境的可持续发展。此外,该项目还
一、污泥的种类污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。它很难通过沉降进行彻底的固液分离。污水处理产生的污泥是典型的有机污泥,其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006Kg/m),呈胶体结构,是一种亲水性污泥,容易管道输送,但脱水性能差。随
海南清达环保科技有限公司:你公司报送的《昌江危险废物集中处置设施建设项目环境影响报告书》(以下简称《报告书》)及有关材料收悉。经研究,现批复如下:一、昌江危险废物集中处置设施建设项目位于海南省危险废物处置中心厂区内(昌江黎族自治县叉河镇唐村),属于改扩建项目。项目主要内容包括:新
近日,江口园区污水应急预处理工程建设项目已完成桩基施工,主体工程将于今年年底前完工。该项目位于江口街道上湗王村前洋王,总用地面积约为1.5万平方米,总投资约1亿元,主要包括细格栅站、调节池及常规应急污水提升泵站、出水提升泵站、重金属化学沉淀单元、除臭装置、加药间和附属办公用房、化验室
突发环境事件是指由于污染物排放或自然灾害、生产安全事故等因素,导致污染物或放射性物质等有毒有害物质进入大气、水体、土壤等环境介质,突然造成或可能造成环境质量下降,危及公众身体健康和财产安全,或造成生态环境破坏及重大社会影响,需要采取紧急措施予以应对的事件,主要包括大气污染、水体污
目前可持续性正在成为人们关注的一个主要问题,以更加综合和创新方式解决水问题就显得十分重要。因此,研发更加可持续性工艺至关重要。在可持续过程中追求的是回收所有有用资源,例如,化学品、营养物质、能源和水本身。在这方面,污水可以被视为资源与能源的载体。回收养分和有机(COD)能量后,出水作为副产品可以用作再生水利用;这与传统工艺完全不同,它们一般不考虑资源与能源回收,而是仅将出水作为主产品(中水)加以利用。事实上,有机能源回收可以显著减少剩余污泥产量和CO2排放量,而回收磷酸盐则可以缓解对磷矿的消耗。
厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。
研究背景人工湿地是人工构建的模拟自然生态系统,研究表明,人工湿地的建设与维护费用低、环境友好且具有生态景观利用价值,可用于多类型污水水质的净化,在国内外均具有广泛应用。人工湿地可对污水厂处理出水进行深度净化,增加工程净化水的自然生态属性,有效减缓了对受纳水体的冲击,同时,缓解了水环境萎缩问题。
燃煤发电会产生大量的含硫危害气体,烟气湿法脱硫工艺是燃煤电厂最常使用降低烟气污染的技术,脱硫效果显著,但湿法脱硫产生的废水会造成二次污染,须要进行特殊处理。从烟气脱硫废水的处理现状入手,简述了脱硫废水产生来源、水质特点及其危害,重点介绍了基于蒸发结晶技术和烟气余热干化技术的脱硫废水零排放工艺路线,分析了其核心技术原理及优缺点,比对了其应用效果,并从知识产权角度分析了零排放的技术主体,并展望了脱硫废水零排放技术的发展趋势。
随着经济技术的发展和城市规模不断扩大,传统的城市生活垃圾渗滤液处理已无法满足新形势下的环保要求。根据城市生活垃圾处理无害化、减量化和资源化的基本原则,“零排放”是解决城市垃圾渗滤液的最佳方法。然而垃圾渗滤液是一种成分复杂的高浓度有机废水,此水特点:具有高COD、高氨氮、高金属含量、微生物营养元素比例失调、水质复杂、具有强烈恶臭、危害性大的特点。处理起来特别复杂。经过多道工序最终超浓母液仍然无法处理。现提出一种真空低温蒸发处理技术解决超浓母液。彻底解决垃圾渗滤液零排放的问题。
化学工业是以石油或天然气为主要原料,通过不同的生产过程、加工方法,生产各种化工产品、有机化工原料、化学纤维及化肥等的工业。由于其生产过程中所采用原料、工艺及加工方法不同,化工废水的种类及特点也大不相同。
摘要:膜芬顿是通过将传统芬顿加以改进,与超滤膜过滤有机结合而产生的一种新型污水处理技术,已证明能有效去除污水中的COD、悬浮物、总磷、氟化物等污染物组分。通过一系列实验室研究、中试和商业规模示范工程的运行,初步证实了膜芬顿技术的适用性和高效率,表明它集成了高级氧化、混凝、化学沉淀、
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!