登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
3.4 反萃剂浓度对铅反萃的影响
考察不同浓度的反萃剂硝酸对铅反萃的影响,实验结果如图 3所示.由图 3可知,随反萃剂硝酸浓度增加,铅的反萃率提高,反萃剂硝酸浓度越高越有利于反萃;当反萃剂浓度为超过0.6 mol ˙ L-1水相中铅离子浓度变化不大,故反萃剂硝酸的浓度可选择0.6 mol ˙ L-1.
图 3 不同硝酸浓度对铅反萃的影响(反萃剂为硝酸、萃取温度为298 K、反萃时间为5 min、油水比(VO/VA)为1 ∶ 1、转速200 r ˙ min-1)
3.5 反萃油水比对铅反萃的影响
考察了不同油水比对铅反萃的影响,实验结果如表 3所示.
表 3 不同油水比对铅反萃的影响
在反萃负载有机相时,得到富集浓缩的含铅溶液有利于回收利用铅,因此希望采用尽可能大的油水比(VO/VA)进行反萃,但较大的油水比会降低反萃率.在实际反萃过程中通常采用多级萃取操作,适当的单级反萃效率即可获得理想的反萃效果;同时,实际反萃过程选择油水比时,应结合实际废水浓度以及负载有机相的浓度,综合考虑反萃效果、富集能力以及经济效益等因素.在本实验中,以下实验反萃油水比(VO/VA)选用2 ∶ 1.
3.6 DNNSA-P204混合萃取剂的循环利用
萃取条件:模拟含铅废水浓度为0.0003 mol ˙ L-1,油水比(VO/VA)为1 ∶ 10,转速200 r ˙ min-1,萃取时间15 min,萃取剂浓度为0.01 mol ˙ L-1的DNNSA和P204煤油溶液(摩尔比为1 ∶ 1),温度303 K,得到负载铅的有机相DNNSA-P204煤油溶液.
反萃条件:硝酸为反萃剂,反萃剂浓度为0.6 mol ˙ L-1,反萃温度298 K,油水比(VO/VA)为2 ∶ 1,反萃时间5 min,转速200 r ˙ min-1,将上述所得负载铅的有机相DNNSA-P204煤油溶液反萃后,重复上一步的萃取实验.实验结果如表 4所示.
表 4 DNNSA-P204煤油溶液循环利用
由表 4可知,循环萃取过程中发现,该混合反胶团损失较小,经过反萃后,该混合反胶团的萃取性能基本保持不变,该萃取剂可实现循环利用.
3.7 DNNSA-P204混合反胶团体系反萃机理初探
与负载铅的单一DNNSA反胶团体系的反萃相比较,DNNSA-P204混合反胶团体系的反萃稍难,这可能和该混合反胶团体系的萃取机理发生改变有关.
单一DNNSA反胶团萃取废水中的铅为阳离子交换机理,被萃取的铅离子不是简单地增溶进入反胶团中,红外光谱表明确形成磺酸盐(高莹莹等,2013);利用低酸萃取高酸反萃进行反应式(1)的逆反应即可实现负载铅的单一DNNSA反胶团的反萃:
当在DNNSA中添加HA时,在一定浓度范围内,二者形成混合反胶团,且对某些金属有正协同作用(Miki et al., 1997),高莹莹(2013)采用恒定摩尔法研究了DNNSA-P204混合反胶团体系对铅的协同萃取,相比较单一DNNSA反胶团体系,DNNSA-P204混合反胶团体系的萃取性能表现出优势.
在能够产生正协同萃取效应的DNNSA-P204混合反胶团体系中,由于HA的存在,废水中铅离子的萃取机理可能发生改变:由于HA水溶性比HD大,当水相和有机相接触时,有机相中的HA和水相中的HA或者A-快速建立平衡,当金属离子与HA结合后,较易进入有机相;在油水界面是HD单分子层,在有机相中HD与HA依靠分子间氢键形成了混合反胶团,此时:
(1)铅离子首先和溶入水相的HA反应,反应产物为络离子,该络离子的亲油性比铅离子强;
(2)该络离子和界面上的HD进行阳离子交换反应,生成中性络合物;
(3)DNNSA中添加P204时,所形成的混合反胶团空腔可能会变大,当该络合物PbADi(界面产物)大小和混合反胶团空腔大小相匹配时,表现为正协同萃取,该界面络合产物增溶进入混合反胶团中,得到PbAD ˙(HD)8 ˙ nHA.
当负载铅的DNNSA-P204煤油溶液进行反萃时,增溶进入混合反胶团内部的PbAD依次进行反应式(4)、(3)和(2)的逆反应,故DNNSA-P204混合反胶团体系虽然在萃取性能方面具有优势,但是由于萃取机理发生改变,与单一DNNSA反胶团体系相比,负载铅的DNNSA-P204混合反胶团体系的反萃变难,实验结果也与此推论相吻合.
为进一步验证上述推论,实验对萃取前和负载铅的DNNSA-P204煤油溶液进行了红外光谱分析,结果如图 4所示.
图 4 负载铅的DNNSA-P204煤油溶液萃取前后的红外谱图(a. DNNSA-P204煤油溶液萃取前;b. 负载铅的DNNSA-P204煤油溶液)
图 4a谱线为萃取前DNNSA-P204混合反胶 团煤油溶液的红外光谱图.从图 4a中可以看出1380 cm-1是萘的特征峰.P204的P O伸缩振动峰从1105 cm-1移至较高的位置1210 cm-1,同时在该混合反胶团中,1210 cm-1峰较强且宽,有可能掩盖了芳磺酸的SO2反对称伸缩振动吸收峰,芳磺酸的SO2反对称伸缩振动吸收峰此时为1210 cm-1右侧的肩峰,SO2对称伸缩振动吸收峰则移动到波数较低的位置1040 cm-1,估计是DNNSA中磺酸基上的氧原子与P204之间形成分子间氢键,两者形成混合反胶团.同时 C—S—O的反对称和对称伸缩振动频率分别位于890 cm-1和728 cm-1,与单一DNNSA反胶团煤油溶液相比,均往低频移动,同时也说明正是由于DNNSA磺酸基上的氧原子与P204之间形成的分子间氢键,使得该振动频率往低频移动.
图 4b为负载铅的DNNSA-P204混合反胶团溶液的红外光谱图.从图 4b可以看出,该混合反胶团溶液萃取铅离子后,并未出现磺酸盐的特征吸收峰,这是由于:红外光谱是对分子团簇进行分析,红外不能反映一个团簇(这里的混合反胶团)里面包裹的每一个具体分子的情况.这与前述的推论相吻合:铅离子是以呈电中性的络合物的形式进入混合反胶团中,故萃取后并未出现磺酸盐的特征吸收峰.同时谱图表明萃取后,DNNSA磺酸基上的氧原子与P204之间形成的分子间氢键增强,因此P204的P O伸缩振动峰从1210 cm-1移至较高的位置1220 cm-1.其余峰的位置在萃取后均无大的变化.
红外光谱结果表明,在DNNSA中添加P204确实能够形成混合反胶团,那么该混合反胶团空腔是否会由于P204的加入而发生改变?而这也是能够产生正协同萃取的关键所在.实验采用BI-200SM广角激光光散射仪对萃取剂19.4%(wt)DNNSA中添加不同量P204(wt)时的混合萃取剂煤油溶液的粒径进行了测定,测试结果如表 5所示.
表 5 溶液粒径的自相关测试报告
从表 5可以看出,在DNNSA含量一定时,随着P204含量增加,混合反胶团粒径逐渐增加.上述表征结果与前述假设相一致,说明DNNSA-P204混合反胶团体系萃取铅离子的机理确与单一DNNSA反胶团体系不同,该混合反胶团体系的萃取效果除与游离萃取剂多少有关外,还与所形成的混合反胶团空腔大小有关,而萃取机理的改变使得该混合反胶团的反萃较单一DNNSA反胶团的反萃难.
4 结论
1)选用硝酸作为反萃剂实现了对负载铅的DNNSA-P204煤油溶液的反萃.反萃时间为5 min,反萃温度为298 K,反萃油水比(VO/VA)为2 ∶ 1,反萃剂硝酸浓度为0.6 mol ˙ L-1时,反萃率可达70%;经过反萃的DNNSA-P204煤油溶液可循环使用于含铅废水的萃取净化,其萃取性能基本保持不变.
2)DNNSA与P204依靠分子间氢键形成混合反胶团,该混合反胶团大小随着P204含量增加而增大;由于HA的存在,废水中铅离子以PbAD形式增溶进入混合反胶团,因此DNNSA-P204混合反胶团体系的反萃比单一DNNSA反胶团体系的反萃难.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
11月6日,全国公共资源交易平台发布了重金属污水处理厂及附属设施项目EPCO(设计-采购-施工-运营)工程总承包重发公告第1次中标候选人公示,中国市政工程中南设计研究总院有限公司、航天凯天环保科技股份有限公司、上海市城市建设设计研究总院(集团)有限公司三方入围该项目,工期为180天。项目占地约35
9月26日,全国公共资源交易平台发布了重金属污水处理厂及附属设施项目EPCO(设计-采购-施工-运营)工程总承包招标公告,项目本项目计划总投资约13577.83万元,项目占地约35.67亩,拟建设金湖县电子产业园重金属污水处理厂及附属工程。包括:建设含铅废水预处理组合池、含铜废水预处理组合池、含铬废水
数据显示,2018年我国精炼铅产量为511万t,废铅回收量约为237万t,回收率达到46%。虽然废铅回收率不断提高,但仍不足50%,半数以上的废铅进入水体、大气、土壤环境中,主要进入水环境,形成含铅废水。含铅废水中的铅最高达到90mg/L以上,一般在2~100mg/L(蓄电池行业)。铅在水中主要以二价铅离子形式
“无废城市”是深入贯彻落实习近平新时代生态文明思想,坚持“创新、协调、绿色、开放、共享”的新发展理念,通过推动形成绿色发展方式和生活方式,持续推进固体废物源头减量和资源化利用,最大限度减少填埋量,将固体废物环境影响降至最低的城市发展模式。2018年12月,国务院办公厅印发了《“无废城市
日前,福建发布《福建省电镀行业污染防治工作指南(试行)。详情如下:福建省生态环境厅关于印发《福建省电镀行业污染防治工作指南(试行)》的通知各设区市生态环境局、平潭综合实验区自然资源与生态环境局:为进一步贯彻落实《土壤污染防治行动计划》(国发〔2016〕31号)和《关于加强涉重金属行业污
重金属的污染严重威胁着水生态环境和人类健康,需要研发更加高效、绿色的水处理药剂。高铁酸钾作为新一代的水处理药剂,以其独特的氧化和混凝效果已经得到了众多研究者的深入研究。文章综述了高铁酸盐的制备方法、高铁酸钾在水处理中对重金属的去除研究以及在处理其他污染物方面的应用。重金属属于对人
摘要:随着人类生活质量的提高,饮用水水质问题受到高度的关注。污泥回流是在此基础上发展起来的强化混凝技术。首先,本文从单独污泥回流、投加混凝剂和与其他工艺联合的污泥回流三方面介绍对污染物的强化去除;其次,阐述了污泥回流的絮体特性及对污染物的去除机理;最后,评估了污泥回流的安全性风险
水资源在国民经济发展和社会生产中发挥着重要的作用,同时也是人们生活中不可缺少的一部分。但是随着工农业的迅速发展,工业废水大量排放,使得水体重金属污染日益严重。据统计,我国每年产生400亿t左右的工业废水。其中重金属废水约占60%。这些废水严重污染地表水与地下水,造成可利用水资源总量急剧
1引言:在铅酸蓄电池的生产过程中,涂板工序、化成工序以及电池清洗工序会产生含铅的重金属废水。铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;有的口中会有金属味,以及动脉硬化、消化道溃疡和
电池技术是电动汽车大力推广和发展的最大门槛,而电池产业正处于铅酸电池和传统锂电池发展均遇瓶颈的阶段,石墨烯储能设备的研制成功后,若能批量生产,则将为电池产业乃至电动车产业带来新的变革。一、什么是铅酸电池电池主要由管式正极板、负极板、电解液、隔板、电池槽、电池盖、极柱、注液盖等组成
(图片源自网络)1、废水中有机氯和氨氮的来源有哪些?有机氮主要以蛋白质形式存在还有尿素、胞壁酸、脂肪胺、尿酸和有机碱等含氨基和不含氨基的化合物有些有机氮如果胶、甲壳质和季胺化合物等很难生物降解。生产这些有机氮或以这些有机氮为原料的工业排放的废水中会含有这些有机氮。钢铁、炼油、化肥
北极星水处理网获悉,根据建设项目环境影响评价审批的有关规定,现将拟审批的《二街化工园区生产污水处理厂建设项目环境影响报告书》基本情况予以公示。公示时间为:自公布之日起5个工作日(不含节假日)。一、建设项目概况项目名称:二街化工园区生产污水处理厂建设地点:昆明市晋宁区兴德路与倚阳路
4月21日,南京国家农高区工业废水处理中心建设工程设计中标候选人公示发布,拟定中标人为中机国际工程设计研究院有限责任公司,投标价格为1830000元。详情如下:标段编号:LSSZ2500471-01SJGH根据工程招标投标的有关法律、法规、规章和该项目招标文件的规定,江苏南京国家农业高新技术产业示范区发展集
时间:2025年11月23-25日地点:南昌绿地国际博览中心“世界钨都”“世界铜都”“亚洲锂都”“稀土王国”【展会介绍】江西省成矿地质条件优越,矿产资源丰富,是我国重要的有色、稀有、稀土和铀矿产基地之一,矿产资源配套程度相对较高。江西的铜、钨、稀土、铀、钽铌、金、银七大类矿产,素有“七朵金
2025年4月3日,为期三天的第19届成都国际环保博览会暨中欧绿色低碳博览会(ECOMONDOCHINA-CDEPE2025)在成都世纪城新国际会展中心圆满落幕。本届博览会由意大利展览集团(IEG)及其在蓉合资公司成都华意中联展览展览有限公司(ECEE),联合四川省环境保护产业协会(SCEPI)主办,再次彰显其作为可持续发展、技
4月17日,雅生活服务公告称,雅居乐控股与雅生活服务签订框架协议,出售安徽安普环保科技有限公司(目标A)70%股权和聊城雅居乐环保科技有限公司(目标B)100%股权,总对价为6060万元。此次交易完成后,目标A和目标B将成为雅生活服务的附属公司,其财务资料将合并至雅生活服务集团的财务业绩中。目标A
近日,南充市生态环境局拟对南充锂电绿色经济循环综合示范项目环境影响报告书作出批复决定,并对基本情况予以公示。项目位于四川南充经济开发区,占地66680.07m2。项目主要从退役锂离子电池中提取镍、钴、锰、锂等有价金属生产硫酸镍、硫酸钴、硫酸锰、碳酸锂、三元前驱体等高附加值产品。主要建设内容
4月10日,湛江中纸纸业有限公司中国纸业南方基地高端包装新材项目一期废水处理工程顺利开工。该项目是由博世科联合体承建的EPC总承包工程,合同额1.17亿元,是我国制浆造纸领域内技术领先的“近零排放”项目。湛江中纸纸业有限公司作为广东冠豪高新技术股份有限公司的全资子公司,系冠豪股份在湛江打造
时间:2025年9月4-6日地址:新疆国际会展中心往届合作单位主办单位乌鲁木齐市化工行业协会联合举办新疆维吾尔自治区石油和化学工业协会新疆维吾尔自治区化学学会指导单位中国腐蚀与防护学会支持单位新疆维吾尔自治区工业和信息化厅新疆维吾尔自治区科学技术厅新疆生产建设兵团工业和信息化局新疆生产建
时间:2025年11月4日-6日地点:南京国际博览中心相约长三角共享新机遇搭建交流桥梁开拓国际合作平台化工行业的风向标共同探索行业未来扎根长三角化工热土把握市场无限商机市场概况长三角地区作为我国经济发展的前沿阵地,凭借其雄厚的经济基础、卓越的科研实力和完善的产业配套,已然成为化工产业的核心
4月8日,榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目脱硫系统EPC公开招标项目招标公告发布。详情如下:榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目脱硫系统EPC公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:榆神工业区清水工业园综合能源供应岛2
榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目脱硫系统EPC公开招标项目招标公告1.招标条件本招标项目名称为:榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目脱硫系统EPC公开招标,项目招标编号为:CEZB250503088,招标人为陕西榆神能源热电有限公司,项目单位为:陕西榆
2025年是中国全面践行“双碳”目标与生态文明建设的关键之年。国务院《2025年政府工作报告》明确提出“协同推进降碳减污扩绿增长,加快经济社会发展全面绿色转型”的重要任务,这对水处理行业的绿色低碳转型与高质量发展提出了更高要求。在此背景下,2025(第二十届)青岛国际水大会水展应势启航,以搭建
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
展会时间:2025年10月07-10日展会地点:法国里昂EUREXPO主办单位:励展博览集团举办周期:两年一届(第31届)【展会介绍】法国国际环保展Pollutec由法国环境能源署(ADEME)支持举办,展会受到法国工商会、欧洲企业网络协会、能源效率和工业脱碳联盟、法国领土工程师协会等相关部门支持。自1986年创办以来
2024东北(长春)第二十五届给排水﹑水处理及泵阀管道展览会时间:2024年3月23日-25日地点:长春会展中·心主办单位:长春市贸促会承办单位:长春维达展览服务有限公司支持单位:吉林省城镇给水协会辽宁省城镇供水协会黑龙江城镇供水协会长春市城乡建设委员会长春市环保产业协会长春市节约用水管理办公
为全面掌握行业绿色转型发展的科技需求,精准评估全省生态环境科技发展水平状况,更好地推动生态环境科技成果转化和产业化应用,不断提高科技服务水平,由生态环境厅、科学技术厅牵头,四川省环境科学学会于2021年起组织编制《四川省生态环保技术白皮书》。2021年,以水环境治理领域为开端,《四川省生
近日,生态环境部就《陶瓷工业废水治理工程技术规范(征求意见稿)》公开征求意见。制定陶瓷工业废水的治理工程技术规范,是加强环境保护工作、改善环境质量的一项重要举措,贯彻《陶瓷工业污染物排放标准》(GB25464-2010),落实《控制污染物排放许可制实施方案》,保证陶瓷工业废水治理工程发挥应有
难降解工业废水高效处理技术与理论的新进展
结合当前工业高盐废水的来源与组成,对其处理技术的现状研究及工程应用进行了综述,分析了实际运用状况,为今后高盐废水的进一步资源化处理、实现真正的零排放提供一定的参考。
近日,国家发展改革委等部门联合印发《“十四五”节水型社会建设规划》(以下简称《规划》),全面推进节水型社会建设。《规划》提出,到2025年,基本补齐节约用水基础设施短板和监管能力弱项,用水总量控制在6400亿立方米以内,万元国内生产总值用水量比2020年下降16.0%左右,万元工业增加值用水量比2020年下降16.0%。到2035年,全国用水总量控制在7000亿立方米以内,水资源节约集约利用达到世界先进水平。
我国水资源短缺已经成为经济社会可持续发展的突出瓶颈制约,高效合理利用水资源成为我国经济社会可持续发展和生态文明建设的重要内容。2021年1月,十部委联合印发的《关于推进污水资源化利用的指导意见》中提出,加快推进污水资源化利用、推动水资源的总量管理、科学配置、全面节约和循环利用。为加快推进污水资源化利用,促进解决水资源短缺、推动再生水在工业园区的循环利用,由中关村环创水循环利用技术创新联盟与青岛阿迪埃脱盐中心联合举办的第二届工业园区污水处理与再生水利用技术现场培训研修班启动招生。
2021(第十六届)青岛国际水大会于2021年7月5日至8日在青岛召开!
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!