北极星

搜索历史清空

  • 水处理
您的位置:环保水处理综合技术正文

厌氧生物处理机理研究厌氧反应四个阶段

2016-10-19 08:42来源:水博网微信关键词:厌氧生物处理生活污水厌氧反应收藏点赞

投稿

我要投稿

把这些参数和给定的条件代入到水解动力学方程中,可以得到停留水解停留时间:

T=13.44h

这对于水解和后续阶段处于一个反应器中厌氧处理单元来说是一个很短的时间,在实际工程中也完全可以实现。如果有条件的地方我们可以适当提高废水的反应温度,这样反应时间还会大大缩短。而且一般对于城市污水来说,长的排水管网和废水中本生的生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没有看到关于水解作为生活污水厌氧反应的限速报道。

发酵酸化反应

发酵可以被定义为有机化合物既作为电子受体也作为电子供体的生物降解过程,在此过程中有机物被转化成以挥发性脂肪酸为主的末端产物。

酸化过程是由大量的、多种多样的发酵细菌来完成的,在这些细菌中大部分是专性厌氧菌,只有1%是兼性厌氧菌,但正是这1%的兼性菌在反应器受到氧气的冲击时,能迅速消耗掉这些氧气,保持废水低的氧化还原电位,同时也保护了产甲烷菌的运行条件。

酸化过程的底物取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。对于一个稳态的反应器来说,乙酸、二氧化碳、氢气则是酸化反应的最主要产物。这些都是产甲烷阶段所需要的底物。

在这个阶段产生两种重要的厌氧反应是否正常的底物就是挥发性脂肪酸(VFA)和氨氮。VFA过高会使废水的PH下降,逐渐影响到产甲烷菌的正常进行,使产气量减小,同时整个反应的自然碱度也会较少,系统平衡PH的能力减弱,整个反应会形成恶性循环,使得整个反应器最终失败。氨氮它起到一个平衡的作用,一方面,它能够中和一部分VFA,使废水PH具有更大的缓冲能力,同时又给生物体合成自生生长需要的营养物质,但过高的氨氮会给微生物带来毒性,废水中的氨氮主要是由于蛋白质的分解带来的,典型的生活污水中含有20-50mg/l左右的氨氮,这个范围是厌氧微生物非常理想的范围。

另外一个重要指标就是废水中氢气的浓度,以含碳17的脂肪酸降解为例:

CH3(CH2)15COO-+14H2O—>7CH3COO-+CH3CH2COO-+7H++14

脂肪酸的降解都会产生大量的氢气,如果要使上述反应得以正常进行,必须在下一反应中消耗掉足够的氢气,来维持这一反应的平衡。如果废水的氢气指标过高,表明废水的产甲烷反应已经受到严重抑制,需要进行修复,一般来说氢气浓度升高是伴随PH指标降低的,所以不难监测到废水中氢气的变化情况,但废水本身有一定的缓冲能力,所以完全通过PH下降来判断氢气浓度的变化有一定的滞后性,所以通过监测废水中氢气浓度的变化是对整个反应器反应状态一个最快捷的表现形式。

产乙酸反应

发酵阶段的产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反应式如以下几种:

CH3CHOHCOO-+2H2O—>CH3COO-+HCO3-+H++2H2ΔG’0=-4.2KJ/MOL

CH3CH2OH+H2O->CH3COO-+H++2H2OΔG’0=9.6KJ/MOL

CH3CH2CH2COO-+2H2O->2CH3COO-+H++2H2ΔG’0=48.1KJ/MOL

CH3CH2COO-+3H2O->CH3COO-+HCO3-+H++3H2ΔG’0=76.1KJ/MOL

4CH3OH+2CO2->3CH3COO-+2H2OΔG’0=-2.9KJ/MOL

2HCO3-+4H2+H+->CH3COO-+4H2OΔG’0=-70.3KJ/MOL

从上面的反应方程式可以看出,乙醇、丁酸和丙酸不会被降解,但由于后续反应中氢的消耗,使得反应能够向右进行,在一阶段,氢的平衡显得更加重要,同时后续的产甲烷过程为这一阶段的转化提供能量。实际上这一阶段和前面的发酵阶段都是由同一类细菌完成,都在细菌体内进行,并且产物排放到水体中,界限并没有十分清楚,在设计反应器时,没有足够的理由把他们分开。

延伸阅读:

【干货】厌氧生物处理工程调试运行要点

原标题:厌氧生物处理机理研究厌氧反应四个阶段
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

厌氧生物处理查看更多>生活污水查看更多>厌氧反应查看更多>