北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复土壤修复评论正文

植物对土壤重金属镉抗性的研究进展

2017-09-24 12:47来源:农业环境科学作者:薛永等关键词:重金属污染重金属镉污染植物修复收藏点赞

投稿

我要投稿

1.2 细胞壁。细胞壁是植物接触重金属的第一个结构,包含木栓质和低聚果糖。木栓质在大量存在根内皮层细胞壁中,它可作为一道屏障来控制细胞体对水和矿物质的吸收,并且影响营养矿物质的积累和转运。低聚果糖包含多糖,能够结合二价和三价的重金属离子。绝大多数的必需元素和非必需元素以二价离子的形式进入植物体内,比如Zn2+、Cd2+、Fe2+、Mn2+和Cu2+。因此,植物体通过改变细胞壁的成分来促进重金属阳离子结合至细胞壁,能够减少自身对有毒金属的吸收。在镉胁迫条件下,发现拟南芥中木质素生物合成基因和细胞增大基因数量变多,然而在遏蓝菜中却一直维持高水平表达。由此可知,对Cd2+敏感的物种比如拟南芥等植物体可利用木质素作为一道物理屏障来阻止 Cd2+进入植物体。

1.3 金属沉淀。金属沉淀是重金属进入植物体的另一个限制途径,正如在重金属超水平积累的植物圆叶南芥中,镉的磷酸盐化合物在根表皮层的细胞壁外积累较多。说明潜在的根细胞壁结构能够减少植物体对重金属的生物利用率,从而增强植物对重金属的忍耐力。

2.控制植物体对重金属镉的吸收

重金属进入植物共质体有几种方法:简单的扩散、通道蛋白的被动运输、或者转运蛋白的主动运输。其中,转运蛋白的主动运输起主要作用。这类转运蛋白一般被称为金属转运蛋白,其对不同的重金属具有不同的转运能力。Cd2+在化学性质上类似于Zn 和Fe。目前,还没有报道镉在植物细胞中有特异的转运蛋白,植物体对镉的吸收很可能是通过ZIP 转运蛋白进行的,这个转运蛋白对Zn2+或Fe2+有较强的特异转运能力,但是对镉的运输能力较差。因此,根细胞中Cd2+的吸收存在一定的偶然性。遏蓝菜对镉的超高吸收,最终都积累到木质部汁液中。在铁缺乏的条件下,IRT1基因可被强烈地诱导,引起植物体对镉的较强吸收。然而,这个观点至今尚未被得到证实。

3.螯合重金属,形成结合复合物

重金属通过细胞膜一般需要被配体螯合,以此减少与细胞复合物不必要的联系。这些配体有寡肽、有机酸、氨基酸和蛋白质等。重金属-配体复合结构是重金属平衡分子机理中的重要组成部分,而金属螯合产物在植物体抗重金属胁迫过程中扮演重要的角色。相比重金属非超积累物种,重金属超积累物种中有更高的植物螯合肽积累,这表明植物螯合肽在重金属解毒、重金属隔离和重金属排除等方面起着重要的作用。

3.1 烟草胺。烟草胺是非蛋白质氨基酸,在体外实验中,对一系列过渡金属有强亲和力,如Cu、Ni、Co、Zn、Fe 和Mn。研究表明,Zn-烟草胺形成的复合结构能存在于生物体内, 比如裂殖酵母。金属-烟草胺复合物通过YSL 转运蛋白透过细胞膜,这个复合物是调节植物体内金属平衡的重要元件。

3.2 谷胱甘肽。谷胱甘肽(GSH)是一个γ-Glu-Cys-Gly 的三肽,既是金属螯合剂、细胞抗氧化剂也是ROS 信号分子,对金属解毒有重要作用。谷胱甘肽(GSH)的巯基部分对金属有强亲和力。拟南芥中GSH 合成酶基因GSH1和GSH2的表达易受Cd2+诱导,从而引起对镉的抗逆,故GSH 水平的降低会减弱植物对Cd2+的抗逆能力。在水稻中,镉耐受品种相对于对镉敏感品种,拥有更高水平的GSH。GSH 是细胞内氧化状态的还原剂,反应产生的GSH 快速与其他GSH 结合生成GSSG;因此,GSH 作为一个ROS 信号分子主要通过于GSH/GSSG 的比值来反映植物细胞的氧化水平。在镉处理下,拟南芥的GSH/GSSG 比值会下降。在镉胁迫条件下,超富集植物东南景天的GSH/GSSG 比值比非超富集植物更高,ROS 产物比非超富集植物更少。

3.3 金属硫蛋白。金属硫蛋白(MTs)是富含半胱氨酸的小分子蛋白质,包含金属结合结构,其巯基部分可以和二价金属离子反应,存在于绝大多数真核生物中。在拟南芥中,有6种MTs:MT1a,MT2a,MT2b,MT3,MT4a和MT4b。其中,MT1,MT2,MT3可以增强植物体对Cd2+的忍耐力,但是不能积累Cd2+。在拟南芥中,MT1a 对镉的忍耐和积累是必需的,MTs 和PCs(植物螯合肽)可以共同保护拟南芥免受镉的毒害。与拟南芥相比,MT1和MT2基因在遏蓝菜中的表达更充分,这表明植物对重金属的忍耐能力与MT1和MT2基因相关联。

4.促进重金属镉排出

植物中克服大量重金属进入体内的另外一条途径来是从细胞中释放出重金属,这些重金属或被释放到土壤中,或存在于质外体。在非忍耐、非富集植物中,根部转运蛋白直接将重金属排到土壤中;然而,对于重金属超富集植物,在重金属被运输至茎部的过程中,主动排除系统会直接将重金属转运至木质部。

目前为止,镉特异的转运蛋白尚未被发现,这可能意味着镉流出是伴随在其它重金属离子的转运过程中的,这些转运蛋白对其它重金属具有更高的亲和力。研究较多的锌排除转运蛋白是HMA4,位于质膜,主要将锌转运至木质部,参与锌和镉的吸收。在拟南芥中发现,过量锌条件下,根部HMA4基因被促进,然而在过量镉条件下,该基因被抑制。同时,在拟南芥中,有一些其他的转运蛋白也参与镉的重新分配、转运和解毒,比如由PCR1和PCR2基因编码的蛋白。位于质膜的PCR1,通过将镉排出细胞,降低植物体内镉含量,来增强植物对镉的忍耐力;另一个位于质膜的转运蛋白PCR2,通过将镉从根部表皮细胞中排出,增强拟南芥对镉的抗逆。

5.重金属镉的区室化

区室化重金属是一个降低细胞质重金属浓度的重要策略。植物通常将重金属储存在液泡中,液泡是一个易于被调控的内部储存结构,通常会将有机矿物质储存其中,可供植物随时备用。非抗逆性物种会在根部液泡积累较高浓度的重金属离子,以阻止重金属被转运至进行光合作用的叶片组织,从而避免重金属的高度累积对植物产生伤害;相反,能适应重金属胁迫的物种在茎部有较强的重金属隔离能力,能够减少根部液泡的重金属含量。重金属ATP 酶HMA3是P1B 类ATP 合酶大家族的一个成员,HMA3被认为很可能是植物体镉隔离行为的参与者。水稻HMA3转运蛋白,可从镉低富集的水稻中分离而得,位于根细胞的液泡膜外部,它的作用是选择性地限制镉从根部转运至茎部。HMA3也促进拟南芥液泡对重金属的贮存能力,从而增强植物体对镉、钴、铅和锌的忍耐力。

延伸阅读:

土壤重金属污染的4种植物修复技术

原标题:植物对土壤重金属镉抗性的研究进展
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

重金属污染查看更多>重金属镉污染查看更多>植物修复查看更多>