登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:针对传统的处理方法不能有效地去除油田开采废水中化学需氧量(COD)的缺点, 引入超临界水氧化法作为含油废水的深度处理技术, 研究了含油废水在超临界水中的氧化降解过程, 并用自由基反应机理解释了超临界水氧化反应的机理. 实验结果表明:超临界水氧化法是一种高效快速的有机废物处理技术, COD 的去除率近90 %;反应温度、停留时间是影响废水COD 去除率的主要因素, 随着反应温度、停留时间的增加, 废水COD 去除率显著增大;氧化反应对废水的反应级数为1. 62 , 对氧为0. 22 , 反应活化能和频率因子分别为(92. 2 ±9. 9) kJ mol -1 和(3. 53 ±3. 33)×103 ,所建立的反应动力学模型与实验结果的偏差在±10 %之内. 此外, 在分析综述基础上指出了超临界水氧化处理过程存在的问题及可能的解决方法.
石油开采过程中会产生大量的含油废水. 研究表明[ 1] , 经过传统的物理、化学、生物等废水处理方法联合处理后, 出水化学需氧量(COD)仍高达350mg L -1 , 无论是外排还是回注, 这个值都比环保和工农业应用的标准高得多, 严重威胁到动植物的生长和人体的健康, 如果不寻找到一条切实有效的解决途径, 势必成为生态平衡的隐患.
2 0世纪80 年代, 美国学者Modell[ 2] 提出的超临界水氧化(SCWO)技术是一种新型的水热氧化技术, 可广泛应用于有机废水、有机废物和城市污泥的处理. 经国内外大量研究表明, 有机污染物在超临界水中可以迅速彻底地氧化降解, 产物为N2 、H2O 、CO2 和盐类等无机小分子化合物, 没有二次污染.高效且清洁的超临界水氧化技术建立在超临界水独特的物理化学性质之上.
水的临界温度Tc =374. 15 ℃, 临界压力P c =22. 1 MPa. 当水处于临界点之上时, 物理化学性质会发生显著的变化:密度比常态水的低(约为常态的1 /3);水分子间的氢键减弱;介电常数变低, 由0 ℃的87. 7 变到超临界状态下的2 ~ 30 , 与有机溶剂相当;离子积大幅度提高, 为常态水的10 ~ 100 倍;扩散系数高, 黏度低等. 此时的水相当于非极性溶剂,对无机盐的溶解性极小, 而对O2 、CO2 和有机物等非极性分子具有极强的溶解能力, 即能与O2 、CO2等互溶形成均相, 消除了相界面对传热传质的相间阻力, 因而可以作为良好的反应介质.本
文以石油工业产生的含油废水为典型污染物, 进行超临界水氧化的实验研究和动力学探索.
1 超临界水氧化反应的实验研究
1. 1 实验结果
本实验的实验系统及流程参见文献[ 3] .
为了考察含油废水在超临界水中氧化降解的效率以及各反应条件对氧化过程的影响, 选择反应温度T 、压力p 、停留时间t 及氧化剂(H2O2)过氧量为主要考察因素. 鉴于目前国内大型油田含油废水初始COD 值介于1 200 ~ 1 300 mg L- 1 之间, 本实验确定废水初始COD 值为1 280. 8 mg L - 1 . 主要实验结果见图1 ~ 3.
结果表明, 在设计实验条件下, 含油废水有机污染物在超临界水中可以有效地氧化降解, 最大COD去除率X COD 可以达到近90 %的水平. 由于初始COD 值不高, 如此高的氧化程度足以满足石油工业和环境保护的要求, 取得了较为理想的实验效果.
1. 2 反应过程机理分析
含油废水中有机废物在超临界水除了发生氧化反应外, 还伴随着有机物的水解、热解等复杂反应,近些年来国内外许多学者致力于超临界水氧化反应过程的研究, 力图准确详尽地描述SCWO 过程的反应路径和反应机理. 在湿式氧化法基础上提出的自由基反应机理是解释超临界水氧化反应比较典型的机理[ 4] , 尽管它不能解释全部的超临界水氧化反应,但是对研究含油废水中有机物氧化降解的过程仍有极大的启示. 该机理认为, 自由基是O2 进攻有机物中较弱的C - H 键产生的
RH +O2 →R +HOO (1)
(R 为自由基;RH 为有机物)
RH +HOO R +H2O2 (2)
过氧化氢进一步被分解成羟基自由基
H2O2 +M 2HO (3)
M 是均质或非均质界面. 在反应条件下, 过氧化氢也能热解为羟基自由基. 羟基自由基具有很强的亲电性, 几乎能与所有的含氢化合物作用
RH +HO R +H2O (4)
上述过程产生的自由基R 能与氧作用生成过氧化自由基, 后者能进一步获取氢原子生成过氧化物
R +O2 ROO (5)
ROO +RH ROOH +R (6)
过氧化物通常分解生成分子较小的化合物, 这种断裂迅速进行直至生成甲酸或乙酸为止, 甲酸和乙酸最终也转化为CO2 和水, 其中比较难氧化的甲酸或乙酸是反应的控制步骤.
向波涛等[ 5] 研究表明, 氧气和过氧化氢可以在超临界水中相互转化, 无论初始添加的氧化剂是氧气还是过氧化氢, 混合体系都可以迅速达到H2O2-O2 的平衡状态, 体系的主要氧化过程是在这样的平衡分布下进行的. 以上6 式反应物中出现的O2 和H2O2 应该理解为体系平衡后氧化剂的状态.综上所述, 自由基反应机理能够很好地解释油脂类化合物在超临界水中的氧化降解过程.
1. 3 影响因素分析
对于不可逆的化学反应而言, 温度的提高有助于化学反应的进行, 如图1 所示, 在其他实验条件不变的前提下, 有机污染物的COD 去除率随温度的升高而增大. 但是, 在反应停留时间较长时, 废水的COD 去除率随温度的变化不太明显, 这是因为在压力不变的情况下, 温度的提高会导致超临界水的密度变小, 这样反应物的浓度降低, 从而引起反应速率减慢. 温度升高所带来的去除率增大和减小的作用相互抵消, 表现为去除率随温度升高非线性增大的趋势. 在工业应用中, 提高反应温度是以消耗更多的能源为代价的, 从经济实用的角度分析, 一味地提高温度是没有意义的, 温度选择在410 ~ 450 ℃应该足够.
如图2 所示, 压力对COD 去除率的影响不是很显著, 压力在比较高的范围内对COD 去除率的影响小于低压范围. 其原因可以从以下3 个方面分析[ 6] :①在超临界条件下, 压力升高, 氧化反应速率常数增大;②压力升高, 超临界水的密度增大;③压力升高, 单位体积内反应物的量增加, 对于一定的反应速度来说, COD 的去除率就有所下降. 几个方面综合作用的结果, 使COD 去除率与压力的关系曲线出现一个最高点. 由于实验中压力对去除率的影响不太显著, 特别是在高压区对去除率的影响弱于低压区, 而且压力升高, 对材料和设备的性能要求也会大大提高, 所以在工业应用中压力不宜过高, 同时应避开临界压力区附近的密度敏感区, 选择在24 ~28 MPa 应该较为合适.
停留时间是影响COD 去除率最为明显的因素, 如图1 所示, 在反应时间为90 s 的情况下,COD去除率可以达到将近90 %的水平. 可以预见, 如果延长反应时间,COD 去除率还会上升, 但由实验结果可以看出, 当反应时间超过一定的值, 反应时间对COD 去除率的影响已经很小了. 反应时间再延长将没有多大的价值, 只能无谓地消耗能源和原材料, 增加系统的体积, 使系统变得庞大, 增加投资, 所以选择反应时间为60 ~ 100 s 是最为经济合理的.
研究表明[ 7] , 超临界水氧化技术尤其适用于高浓度的有机废水(废水中有机物的质量分数一般为10 %左右), 由于O2 能以任意比例溶解于超临界水中, 工业应用中氧化剂(一般为O2)相对于废水中高含量的有机污染物仍然是大大过量的(通常为10倍). 为了考察低过氧量条件下氧化剂对反应结果的影响, 我们选择过氧量为265 %和375 %的两种情况进行比较, 发现COD 去除率随过氧量的增加而增大, 但氧化剂的量并非越大越好. 因为SCWO 属于自由基反应, 增加H2O2 的量在反应初期能产生较多的自由基, 导致初期反应速率很快, 但到后来就趋于平稳了. 国内外的一些研究发现, 废有机物的氧化降解率不是随过氧量的增加而单调增加的, 而是存在着一个最佳值, 超过这个最佳值后, 过氧量对COD 去除率的影响很小, 所以并不能为了得到较高的COD 去除率而一味地提高过氧量.
1. 4 动力学分析
本文借助幂函数模型来描述含油废水SCWO的动力学方程, 此模型不考虑中间反应产物, 可以用某一综合指标例如COD 、TOC 等来对氧化降解进行研究. 本实验中以COD 去除率表示的总的速率方程为
式中:r为反应速率, mg L -1 s- 1 ;k 为反应速率常数, 其量纲与反应级数a 、b 、c 有关;[ COD] 0 为含油废水的初始化学需氧量, mg L - 1 ;[ COD] 为反应液的化学需氧量, mg L - 1 ;[ O] 为氧化剂的质量浓度,mg L - 1 , [ O] =[ O] 0 - XCOD [ COD] 0 , 实际的反应体系中氧气的含量是大大过量的, 故近似认为[ O] =[ O] 0 ;[ H2O] 为水的质量浓度, mg L- 1 . 由于在超临界水氧化降解的反应过程中, 体系中水的浓度很大, 其摩尔分数均在99 %以上, 可以认为反应过程中水的浓度几乎不变, 因此将其作为一个常数来处理. 考虑上述原因即把[ H2O] c 合并到速率常数k 中, 于是式(7)可以简化为
在处理实验数据的基础上, 用Gauss-New to n算法进行多参数曲线拟合, 得到26 MPa 下的动力学相关参数, 见表1.
根据A rrhenius 定理
式中:k0 为频率因子, 与k 具有相同的量纲;Ea 为反应活化能, J mo l - 1 ;R 为通用气体常数, J mol - 1K - 1 .
对上式进行线性化, 可得到以T - 1 为自变量的线性方程
采用最小二乘法对lnk 与1 /(R T) 进行回归分析,进而获得废水超临界水氧化的活化能和频率因子,其结果如表2 所示.
SCWO 去除废水中COD 的总动力学方程为
将动力学回归得到的曲线和实验数据点一并示于图4 , 实验数据显示出良好的动力学规律. 结合式(10)的模型对文中各实验点的COD 去除率进行了计算, 模型计算值X c 与实验值X e 的比较见图5. 可以看出, 含油废水在不同条件下降解的模型计算值与实验值吻合较好, 偏差不超过±10 %, 所以式(13)的动力学方程是可信的.
2 SCWO 存在的问题
在超临界条件下, 高温、高压、高浓度的溶解氧、反应中产生的活性自由基、强酸及某些盐类物质都对反应器有加速腐蚀的作用. 在300 ℃的亚临界状态下, 由于水的介电常数和无机盐的溶解度均较大,故主要以电化学腐蚀为主. 当温度升至400 ℃以上时, 水的介电常数和盐的溶解度迅速下降, 这时以化学腐蚀为主[ 8] . 对世界上已有的主要耐蚀合金的实验表明[ 9] , 不锈钢、镍基合金、钛等高级耐蚀材料在SCWO 系统中均遭受到了不同程度的腐蚀. 腐蚀问题不仅影响了反应器系统的正常工作, 导致其寿命的降低, 而且由于腐蚀而溶出的Cr6 +等金属离子还会影响后续处理的质量. 目前, 主要的解决方法是研制新型耐压耐腐蚀的材料来优化反应器设计, 以及采用催化剂或更强的氧化剂(H2 O2 等)来降低超临界反应的压力和温度, 减弱对反应器的腐蚀.
SCWO 工业化应用过程中一个很大的技术难题是固体颗粒特别是无机盐类对设备的堵塞, 这是因为盐类在超临界水中溶解度极低. 解决堵塞的途径主要从以下几个方面尝试[ 10] :首先, 增加反应系统的压力, 美国LOS A LAMOS 实验室就采用加压到110 MPa 来改善无机盐在超临界水中的溶解性能;其次, 优化反应器设计, 如蒸发壁反应器等;最后, 引入可移动性表面, 通过移动的表面把沉积盐带走.
此外, 从经济角度考虑, 如何以最大效率回收利用SCWO 反应中产生的热能, 也是工业化应用过程中面临的另一个挑战.
上述SCWO 过程中产生的种种问题, 国内外众多学者已经或正在进行相关的研究和探索, 相信一旦解决了这些制约超临界氧化技术发展的关键问题, 作为一项前途光明的高效处理技术, SCWO 必将在环保、能源领域发挥越来越重要的作用.
3 结论
(1)SCWO 是一种清洁高效的废水处理技术,在实验条件下, 废水COD 去除率达到近90 %的水平, 满足石油工业的环保要求.
(2)反应温度和停留时间是影响超临界水氧化反应的显著因素, 氧化反应的程度随着温度和时间的增加而增大.
(3)自由基反应机理可以较好地解释含油废水在超临界水中氧化降解的过程.
(4)式(13)是含油废水在超临界水条件下氧化降解的动力学方程.
(5)SCWO 作为一种新兴的有机废弃物处理和资源化利用技术具有极其光明的应用前景, 但目前在其商业化应用的过程中还存在许多问题亟待解决.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
9月13日,金陵石化近零排放-固废治理项目环境影响评价第二次公示发布,项目总投资额约2614万元,环保投资2614万元,约占总投资的100%。建设规模:在金陵石化自有工业用地上,对热电部锅炉增设固废掺烧设施单元,将干化污泥和煤粉混合掺配,利用金陵分公司现有热电锅炉进行焚烧,实现生化污泥的协同处理
近日,江苏省南京市中级人民法院就南通市生态环境局诉程某生态环境损害赔偿案件作出一审判决,判令被告程某支付生态环境损害赔偿金918033元。该案件是南通市通州生态环境局办理的首例生态环境损害赔偿民事公益诉讼案件,经过长达两年的磋商与诉讼,终于将程某应承担的生态环境损害赔偿责任追偿到位。本
通过长达一年时间的技术交流和设计方案对接,巴安水务下属子公司KWI,获得埃及业主NasrPetroleumCompany(N.P.C)和总包方埃及通用石油公司下属子公司Petromaint的技术认证,近期在埃及亚历山大市正式签订埃及N.P.C炼油厂含油废水处理系统EP工程。
8月9日,国家能源招标网发布了神东煤炭专业化服务基地污水厂含油废水处理技术研究与示范公开招标中标结果公告,中标人为陕西科鼎环境科技有限公司。
8月4日,国家能源招标网发布了神东煤炭专业化服务基地污水厂含油废水处理技术研究与示范公开招标项目中标候选人公示,第一中标候选人为陕西科鼎环境科技有限公司,投标报价为178.47万元。
日前,国家能源招标网发布神东煤炭专业化服务基地污水厂含油废水处理技术研究与示范公开招标项目招标公告。
有关含油废水处理工艺的简短总结,大家一起来学习吧!一、含油废水的定义含油废水是指:含有脂(脂肪酸、皂类、脂肪、蜡等)及各种油类(矿物油、动植物油)的废水。含油废水的特点是COD、BOD高,有一定的气味和色度、易燃、易氧化分解,一般比水轻、难溶于水,含油废水是一种量大面广且危害严重的工业
【摘要】对油类物质在水中的特征以及存在形式进行了阐述,对絮凝法、生物法、气浮法以及膜分离法等多种含油废水的处理方式进行了分析并对每种方法的特点进行了相应的总结,同时对最新的发展状况进行了分析,对处理技术提出了展望与建议。1、含油废水的种类与危害含油废水不仅面积广而且量也非常的大,
[摘要]工业生活含油废水的排放对生态环境造成了严重的损害,高效节能新型油水分离材料已成为研究热点。本文重点介绍了无机陶瓷膜、有机聚烯烃膜、聚砜类膜、含氟类聚合膜以及纳米改性材料膜在含油废水中的应用。分析了不同膜分离材料的优缺点并提出了展望。[关键词]膜分离材料;油/水;分离含油废水的
摘要:指出了膜分离技术因为其占地面积小,操作简单、耗能低,并且膜种类多,对废水适应性较强,比较适合含油废水处理,目前在水处理方面应用广泛。综述了膜技术的发展历程,分析了不同膜材料的适用性以及可能造成的膜污染的影响因素及注意事项。关键词:含油污水;膜技术;膜清洗;膜组件;进展1引言
摘要:本文主要对冷轧油废水的特点进行了简要介绍,并对各类型的含油废水,从物理、化学及生物几个方面提出了一些除油方式,希望能够为冷轧废水除油提供参考。关键词:冷轧含油废水;水质特点;除油技术随着社会科技的不断发展,各类机械化设备的自动化程度也得到了提高,在工业生产中得到了广泛应用,
宜昌市人民政府办公室8月20日发布《宜昌市建设项目主要污染物总量指标管理办法(试行)》,管理对象包括氮氧化物、二氧化硫、挥发性有机物、颗粒物四项大气污染物和化学需氧量、氨氮、总磷三项水污染物。宜昌市建设项目主要污染物总量指标管理办法(试行)第一章总则第一条为规范管理建设项目主要污染
利用渗坑排放水污染物案一、案情简介2022年5月7日,崇州市羊马街道环保办接到街道河长办反映:崇州市羊马街道泗安社区15组刘*威、陈*经营的成都**金属制品有限公司(工程机械经营场所)有疑似向沟渠排放废水情况。随后,羊马街道环保办立即将此情况上报我局,我局执法人员立即对所反映点位开展现场执法
2021年10月26日,南京六合生态环境局联合六合公安分局食药环侦大队对六合某公司进行现场检查,发现该公司通过干扰自动监测设施的方式排放化学需氧量污染物。该公司在废水在线监控取样点位至在线监控站房的取样管路上私自设置三通阀,接入清水。六合生态环境局委托南京高博环境科技有限公司于当日17时38分
北极星环境监测网获悉,11月12日,青海省生态环境监测中心发布了关于征求地方标准《高氯水质化学需氧量的测定氯气吸收法(征求意见稿)》意见的函。
6月2日,市生态环境局会同市公共资源交易中心在浙江省排污权交易网组织开展了2021年衢州市第2期政府储备排污权竞价出让,现将具体结果公布如下:
生态环境部5月18日向媒体通报了2021年4月和1-4月全国地表水、环境空气质量状况。
江苏省常州市两家企业日前通过省排污权交易平台成功完成一笔排污权交易,常州市东方呢绒有限公司以5000元/吨的价格,将富余的化学需氧量排放指标通过协议方式出让给常州长登焊材有限公司,这是江苏省排污权交易平台正式上线以来的首笔交易。
污水处理厂中的化验是一个很重要的运营手段,分析结果是污水调节的依据,所以分析的准确性要求很高,必须保证分析数值的准确才能保证系统的正常运行手段的正确合理!一、化学需氧量(CODcr)的测定化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而
实际上,关于COD和BOD,很多人也就知道COD是化学需氧量,BOD生化需氧量,还有老师们不下数万次强调过的用B/C判定水的可生化性,然后就魔性的在大脑里循环0.30.30.30.3....不过随着自己经验的逐渐积累,才发觉自己之前了解的都是些啥呀。深深体会到“纸上得来终觉浅,绝知此事要躬行”的那么一点点真谛
1、什么叫COD(化学需氧量)?化学需氧量(COD)是指废水中能被氧化的物质在被化学氧化剂氧化时,所需要的氧量,以氧的毫克/升作为单位。它是目前用来测定废水中有机物含量的一种最常用的手段。COD分析中常用的氧化剂有高锰酸钾(锰法CODMn)和重铬酸钾(铬法CODCr),现在常用重铬酸钾法。废水在强酸
6月9日凌晨两点,贵州省遵义市生态环境局仁怀分局与茅台镇派出所的执法人员发现在茅台镇中华村渔塘组,一辆罐车停驻在王某自家院坝内。走近一看,黑暗里,大量白酒生产废水正通过生活污水管道被私自偷排至溶洞,王某被当场抓获。经查,6月8日中午,仁怀市陈某酿酒作坊管理人向某某联系同村刚买罐车的驾
新地环保携“绿色化工园区适用技术—新奥超临界水氧化技术”受邀参与全国化工园区可持续发展大会。3月30日,由中国石油和化学工业联合会与儋州市政府(洋浦经济开发区管委会)共同组织的“2023中国化工园区可持续发展大会”在海南省儋州市召开,来自全国各地的行业协会、化工园区、化工及其关联企业领
2021年6月30日,新地环保技术有限公司(以下简称“新地环保”)与张家港密尔克卫环保科技有限公司(以下简称“密尔克卫”)超临界水氧化环保项目正式签约,这标志着新地环保完全自主知识产权的超临界水氧化技术在市场应用方面再获突破。
2019年12月31日,新奥环保技术有限公司与什邡开源环保科技有限公司正式签订战略合作协议和超临界成套技术、设备供货及运维合作。这标志着新奥环保完全自主知识产权的超临界水氧化技术在市场应用方面的重大突破。此次签订的4万吨/年超临界水氧化成套技术和设备是新奥环保在国内的第八套工业化设备,同时
1.引言近年来,社会的发展不断进步,带动了我国对各项化工产品的需求,因此,全国各地的大中小型化工也不断涌现出来,大大满足了人们对各类化工产品的需求。但是由此带来了大量的难降解、高浓度有机化工废水,该类废水单独使用生物法或物化法等“常规”方法通常难以有效处理,且处置成本高,污染问题也
项目简介含酚废水主要来源于焦化、煤气、炼油和以苯酚或酚醛为原料的化工、制药等生产过程,其来源广、数量多、危害大,是各国水污染控制中列为重点解决的有毒有害废水之一。2011年,我国废水排放量约652亿吨,其中含酚废水排放量约5110万吨。该类废水具有以下特点:来源广:主要来自石油加工及煤化工
导读:6月5日,2019年世界环境日全球主场活动在浙江杭州举行,习近平在全球主场活动致贺信中强调,中国国高度重视生态环境保护,秉持绿水青山就是金山银山的重要理念,倡导人与自然和谐共生,把生态文明建设纳入国家发展总体布局,努力建设美丽中国,取得显著进步。作为“美丽中国”的重要践行者,新奥
摘要:超临界水氧化(SCWO)在过去的三十年中作为取代焚烧处理高浓度工业有机废水的技术开发取得了巨大的进展。超临界水氧化作为新型废物处理技术存在一些缺陷,譬如反应器腐蚀与盐堵塞阻碍了其工业进程中的应用。此项研究详细描述了超临界水氧化技术存在的几类相关问题。其中,重点对该技术工业化的应
2019年4月15日-17日,由德国慕尼黑博览集团、中国环境科学学会等单位联袂举办的IEexpo2019第二十届中国环博会在上海新国际博览中心盛大举行。作为亚洲最具影响力、最高品质的环境技术交流盛会。本届中国环博会规模再创新高,其中现场展示面积达150000平方米,超过2000家优质环保领军企业参展,荟集了全
据统计,2017年上半年,600余家节能环保行业上市公司的平均研发费用约为3500万元,占主营业务收入比重约为1.6%。全行业前3名的研发投入达到14.8亿元,占所有上市公司研发投入的20%,这意味着行业内大部分企业在研发方面投入严重不足。一些环保企业不重视技术研发投入,对进一步的技术研发漠不关心。随
工业生产领域容易产生大量难降解高浓度废水,特别是有机毒物废水处理更是其中难啃的一块硬骨头。上海交大昨天宣布,经过10年艰苦技术攻关,研发出新型难降解高浓度高毒有机废水处理技术与装备,攻克了超临界水氧化技术处理高浓度高毒难降解有机废水在产业化应用时面临的高压、堵塞、腐蚀、大型化和稳定
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!