北极星

搜索历史清空

  • 水处理
您的位置:环保水处理市政污水技术正文

底物浓度对反硝化MBBR处理反渗透浓水脱氮效能及脱氮基因的影响

2019-07-18 09:28来源:《环境工程技术学报》作者:李莉等关键词:MBBR反渗透浓水反硝化收藏点赞

投稿

我要投稿

2.1.2 底物浓度对去除NO−2O2--N的影响

2.1.2.1 进水TN和NO−3O3--N浓度

由图3可见,Ⅲ阶段于相对于Ⅱ阶段,NO−2O2--N去除率由86.55%±3.73%降至76.46%±6.69%;同时NO−2O2--N去除速率也由(42.66±5.46)g/(m3·d)降至(31.81±2.66)g/(m3·d)。可见随着TN和NO−3O3--N浓度增加,NO−2O2--N去除率和去除速率均下降。可能是因为在反硝化过程中,每消耗1 g NO−3O3--N或NO−2O2--N产生3.57 g碱度(以CaCO3计),反硝化过程可导致反应器内pH升到9以上,且进水NO−3O3--N浓度越高,产生的碱度越高[26]。有报道指出,当pH为9.2时,控制NO−2O2--N还原的nirK基因活性受到抑制,NO−2O2--N形成积累[27]。由2.1.1.1节可知,Ⅲ阶段与Ⅱ阶段相比,反硝化速率增加,产生的碱度高,造成的NO−2O2--N积累率高,因此NO−2O2--N去除率和去除速率均下降。

7.jpg

2.1.2.2 进水NO−2O2--N浓度

由图3可见,Ⅱ阶段相对于Ⅰ阶段,NO−2O2--N去除率由69.07%±5.63%增至86.55%±3.73%,NO−2O2--N去除速率也由(13.81±2.85)g/(m3·d)增至(42.66±5.46)g/(m3·d)。Ⅲ阶段相对于Ⅳ阶段,NO−2O2--N去除率增加1.68个百分点,NO−2O2--N去除速率也由(18.21±2.42)g/(m3·d)增至(31.81±2.66)g/(m3·d)。由此可知,随着NO−2O2--N浓度的升高,NO−2O2--N去除率和去除速率增加。一方面,NO−2O2--N增多有利于厌氧氨氧化反应的进行[28]。另一方面,有报道称,当NO−2O2--N浓度小于30 mg/L时,随着浓度的升不高,反硝化电子受体增加,NO−2O2--N去除速率随之增加,但当进水NO−2O2--N浓度大于40 mg/L时,随着浓度的升高,反硝化速率下降[29]。

2.1.3 底物浓度对去除TN的影响

2.1.3.1 进水TN和NO−3O3--N浓度

由图4(a)可见,Ⅲ阶段和Ⅱ阶段的TN去除率分别为78.47%±8.65%和76.95%±9.40%,变化不大;但TN去除速率由Ⅱ阶段的(50.19±7.19)g/(m3·d)增至Ⅲ阶段的(69.08±10)g/(m3·d)。可见NO−3O3--N和TN浓度的增加,对TN去除率影响不大,TN去除速率随浓度增加有所增加,反应器内微生物对NO−3O3--N和TN浓度增加适应良好。王亚宜等[30]发现,初始NO−3O3--N浓度越高,反硝化速率越快;反硝化速率越大,TN去除率也越高[22]。

8.jpg

2.1.3.2 进水NO−2O2--N浓度

由2.1.3.1节可知,进水NO−3O3--N浓度对TN去除率影响不大,因此只考虑NO−2O2--N浓度对去除TN的影响。由图4(b)可见,Ⅱ阶段相对于Ⅰ阶段,TN去除率和去除速率分别降低3.15个百分点和1.15 g/(m3·d);Ⅲ阶段相对于Ⅳ阶段,TN去除率和去除速率分别降低5.88个百分点和4.07 g/(m3·d)。由此可知,随着NO−2O2--N浓度的升高TN去除率和反硝化速率均稍有下降,这可能是因为进水NO−2O2--N浓度对反硝化微生物具有抑制作用,随着NO−2O2--N浓度增加,抑制作用增强,硝酸还原菌等脱氮菌的活性降低所致。

2.2 底物浓度对反硝化MBBR微生物群落影响

2.2.1 生物量变化

Ⅲ阶段填料生物量(7.29 mg/g)与Ⅱ阶段(16.06 mg/g)相比,减少了8.77 mg/g。结合2.1节可知,Ⅲ阶段与Ⅱ阶段相比,NO−3O3--N和TN去除率高,NO−2O2--N去除率低。有报道指出,MBBR填料生物量越大处理负荷不一定越高[12],也可能是Ⅲ阶段生物膜中的有效细菌较多,同时其底泥中生物量也多。

Ⅱ阶段填料生物量(16.06 mg/g)与Ⅰ阶段(16.34 mg/g)相比,稍有下降;Ⅲ阶段填料生物量(7.29 mg/g)远低于Ⅳ阶段(25.94 mg/g)。这与4个阶段各种氮物质去除率变化一致。

2.2.2 填料表面生物膜形态观察

对稳定期的填料表面进行SEM扫描,观察其表面挂膜情况和微生物组成,结果如图5所示。由图5可见,Ⅰ阶段和Ⅱ阶段填料表面生物膜致密,主要为丝状菌、球菌和杆菌,并且球菌较多,杆菌和丝状菌相对较少。Ⅲ阶段的生物膜较稀薄,主要以杆菌和丝状菌为主,球菌较少。而在Ⅳ阶段,生物膜相较Ⅰ~Ⅲ阶段更为均匀密实,且球菌的比例增多。球菌可能为反硝化细菌中的微球菌属,而典型的反硝化假单胞菌属和色杆菌属均呈杆状[31]。

9.jpg

2.2.3 生物膜和底泥中脱氮基因拷贝数变化

用qPCR测定各阶段稳定期的生物膜和底泥样品中基因拷贝数,结果如图6所示。由图6可见,Ⅲ阶段生物膜样品中16S rRNA 基因、narG、nirK、nirS、nosZ和Anammox基因拷贝数分别为(7.7×1010±5.3×109)、(3.2×107±1.5×106)、(1.7×108±8.3×106)、(1.4×1010±6.1×108)、(1.1×107±3.2×106)和(3.0×106±4.9×105)个/g,除nirK、nirS和Anammox基因外,均高于Ⅱ阶段;Ⅲ阶段底泥样品中除nirK和Anammox基因外也均高于Ⅱ阶段。各脱氮基因拷贝数随底物浓度增加而增大,因此TN和NO−3O3--N去除率变化不大,但二者的去除速率随浓度增加而增大。反硝化过程包括4个连续的步骤,其中nirS和nirK基因驱动将NO−2O2-逐步还原为NO,并在其他基因作用下最终还原为N2,是NO−2O2-转化的关键基因,也是研究最为广泛的基因[32],Anammox基因是典型厌氧氨氧化基因(与NO−2O2-去除密切相关)[33]。Ⅲ阶段相比于Ⅱ阶段上述基因拷贝数的降低也与NO−2O2--N去除率和去除速率下降一致。

10.jpg

图64个阶段填料生物膜和底泥中各基因拷贝数

Fig.6The copy numbers of genes in carrier biofilm and activated sludge of four stages

Ⅱ阶段生物膜样品中16S rRNA、narG、nirK、nirS和nosZ和Anammox基因拷贝数分别为(5.9×1010±4.6×109)、(1.3×107±1.1×106)、(4.0×108±3.7×107)、(1.7×1010±5.4×108)、(6.1×106±4.9×105)和(1.5×107±3.2×106)个/g,除narG基因外,均高于Ⅰ阶段;Ⅱ阶段底泥样品中所有基因拷贝数均高于Ⅰ阶段;并且Ⅱ阶段的Anammox基因拷贝数明显高于Ⅰ阶段,这与Ⅱ阶段NO−2O2--N去除率和去除速率高于Ⅰ阶段相一致;但Ⅱ阶段NO−3O3--N和TN去除率和去除速率稍低于Ⅰ阶段,可能与Ⅱ阶段中narG基因拷贝数较低有关。

Ⅲ阶段生物膜样品中,除16S rRNA基因和Anammox基因外,反硝化narG、nirK、nirS和nosZ基因拷贝数均低于Ⅳ阶段,这也与Ⅲ阶段与Ⅳ阶段相比NO−3O3--N和TN去除率和去除速率均降低一致;在nirS基因拷贝数基本接近的情况下,Ⅲ阶段的Anammox基因拷贝数明显高于Ⅳ阶段,这有利于厌氧氨氧化的发生和NO−2O2--N的去除[5],因此Ⅲ阶段与Ⅳ阶段相比,NO−2O2--N去除率和去除速率增加。

此外,NO−2O2--N还原酶的编码基因中,4个阶段的nirS基因拷贝数均比nirK基因拷贝数高1~2个数量级,这与其他生物系统的脱氮基因研究结果相一致[34,35,36]。相关报道指出,nirK基因比nirS基因对于厌氧环境的要求更高[37],导致nirK基因拷贝数较低;且nirS基因在已研究过的反硝化细菌中分布更广,而仅有30%的菌株含有nirK基因[38]。Ⅱ阶段的Anammox基因拷贝数比其他阶段高1~4个数量级,推测是由Ⅰ阶段高NO−2O2--N积累率引起,这也导致Ⅱ阶段NO−2O2--N去除率和去除速率均较高。

3 结论

(1)在稳定期内进水中NO−3O3--N、NO−2O2--N和TN浓度分别为(8.70±6.34)~(29.85±5.27)、(10.94±8.51)~(20.94±5.78)和(26.68±11.87)~(44.10±7.37)mg/L时,反硝化MBBR对NO−3O3--N、NO−2O2--N和TN的去除率分别为(80.69%±7.46%)~(89.76%±4.02%)、(69.07%±5.63%)~(86.55%±3.73%)和(76.95%±9.4%)~(84.35%±6.18%),具有稳定的反硝化效能。

(2)进水NO−3O3--N浓度为(8.70±6.34)~(24.23±8.69)mg/L,TN浓度为(28.43±5.69)~(44.10±7.37)mg/L时,NO−3O3--N和TN去除率变化不大,但二者的去除速率随浓度增加而增加,NO−2O2--N去除率和去除速率下降,这与NO−3O3--N浓度越高产生的碱度越高,导致NO−2O2--N积累率较高有关。

(3)进水NO−2O2--N浓度为(10.94±8.51)~(20.94±5.78)mg/L时,NO−3O3--N和TN去除率及去除速率均随浓度升高而下降,这可能是因为进水NO−2O2--N浓度对反硝化微生物具有抑制作用;NO−2O2--N的平均去除率及去除速率均上升,这与Anammox基因等脱氮基因拷贝数增多有关。

(4)反硝化MBBR生物膜主要由球菌、杆菌和少量的丝状菌组成。生物膜(除nirK、nirS和Anammox基因)和底泥(除nirK和Anammox基因)中各脱氮基因拷贝数随NO−3O3--N和TN浓度增加而增大;随NO−2O2--N浓度增加,nirK、nirS和Anammox等基因拷贝数也相应增加。4个阶段的基因拷贝数变化与NO−3O3--N、NO−2O2--N和TN去除效果变化一致。

原标题:底物浓度对反硝化MBBR处理反渗透浓水脱氮效能及脱氮基因的影响
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

MBBR查看更多>反渗透浓水查看更多>反硝化查看更多>