登录注册
请使用微信扫一扫
关注公众号完成登录
2 .3 反应周期内COD 去除的变化规律
系统稳定后对一个周期内COD 去除情况进行考察, 结果见图4 。由图4 可以看出, 1 h 内COD 从306 mg/ L降到15 mg/ L以下, 去除率达95 %, 随着时间的延长, 去除率达97 %。说明污泥中微生物的生理结构没有破坏, 其呼吸、合成等新陈代谢作用可以正常进行, 即该系统中存在能适应高盐环境的有机物氧化菌群, 因此能够保持较高的有机物去除能力。
2 .4 反应周期内NH+4 -N 、NO-3 -N 、NO-2 -N的变化规律
对反应器一个周期内NH+4 -N 、NO-3 -N 、NO-2 -N的去除情况进行考察, 结果见图5 。由图5 可以看出, 4 h 内N H+4 -N从25 mg/ L降到10 mg/L以下, 去除率达到61 %。NO-2 -N在1 mg/L以下, 无NO-2 -N的积累。好氧阶段NO -3 -N 逐渐增大, 从0 mg/L 增加到5 mg/ L左右, 缺氧阶段NO -3 -N从5 mg/L降低到4 mg/L 。说明硝化菌和亚硝化菌已适应高盐环境。在反应周期内的缺氧阶段, NO-3 -N 去除不明显, 分析原因, 可能是由于反应后期COD 浓度较低,碳源不足导致反硝化不够充分所致。
2 .5 反应周期内TP 的变化规律
对反应器一个周期内TP 的去除情况进行考察, 结果见图6 。在含盐环境中, 盐度在聚磷菌细胞内累积。当盐度在细胞内聚集到一定程度导致了细胞渗透压的显著增加, 减小了细胞的聚磷能力进而引起磷去除率的降低[ 13] 。由图6 可以看出, 进水TP 为5 .4 mg/L , 最终TP 去除率为55 %。好氧阶段聚磷菌能够从外部环境吸收磷, 并将磷以聚合的形态贮藏在菌体内, 经过好氧阶段水中TP 降低为1 .5 mg/L左右。缺氧阶段污泥释放磷, T P 从1 .5mg/ L增加到2 .4 mg/ L , 磷的释放量比较低, 分析原因, 可能是由于反应后期碳源不足, 同时系统处于缺氧状态而不是完全厌氧状态所致。INT RASUNGKHA等[ 14] 在试验中确定盐度5 g/L(质量分数为0 .5 %)为系统除磷的耐盐极限, 高盐废水中的生物除磷将成为高盐废水生物处理中的限制因素,如何培养和驯化出耐盐的聚磷菌或是接种嗜盐聚磷菌进行除磷还有待进一步研究。
2 .6 有机负荷对COD 去除的影响
进水负荷是影响有机物降解速率的重要因素[ 15 , 16] , 为了考察有机负荷的耐受性, 在污泥驯化阶段完成后, 维持其他各条件不变, 依次提高有机负荷(以COD 表征)为288 、387 、473 、618 、701 mg/L , 稳定后测定COD 。从图7 可以看出, 出水COD 均在1h 内降到30 mg/L以下, 去除率达95 %以上。说明盐度一定时, 进水有机物负荷的增大并未对出水有机物浓度带来很大的影响, 该系统耐有机负荷冲击能力比较强。
2 .7 盐度冲击对COD 和N H+4 -N去除的影响
为考察盐度冲击对COD 和NH +4 -N 去除的影响, 对适应3 .5 %盐度的系统进行盐度冲击, 改变进水盐度为5 .0 %, 稳定后测定一个周期内COD 和NH +4 -N去除情况。由图8 可见, 盐度的改变对COD 没有影响, 2 种盐度下1 h 之内COD 均降到10mg/ L左右。可能因为SBR 本身具有耐冲击浓度梯度的优点, 同时可能因为嗜盐菌多数为好气化能异养菌[ 17] , 其所需的营养物质必须通过外界获得所致。
由图9 可见, 盐度的改变对N H+4 -N的去除影响较大, 在3 .5 %的盐度下NH +4 -N 最终去除率达61 %, 而在5 .0 %的盐度下NH +4 -N 最终去除率为31 %, 随着盐度的增大, NH +4 -N 去除率降低。分析原因, 可能是由于3 .5 %盐度下嗜盐菌直接驯化成的活性污泥系统, 进水盐度增大后, 硝化细菌的细胞内外渗透压改变, 导致其活性降低, 对NH +4 -N的处理能力减小, 造成N H+4 -N 的去除率与盐度为3 .5 %的系统相比明显降低。
3 结论
(1)从大连旅顺盐场底泥中筛选出适合高盐度的嗜盐菌, 在SBR 中对其进行3 .5 %盐度的驯化。经测量, 内源呼吸阶段SO UR 为10 .36 mg/(g · h),外源呼吸阶段SOUR 达到29 .09 mg/(g ·h), 表明所筛选的嗜盐菌培养的污泥具有较高活性。
(2)利用嗜盐菌培养的污泥进行高盐模拟废水处理试验。结果表明, 在每周期12 h , 曝气量0 .6L/min ,MLSS 为600 mg/ L , 污泥龄为18 d 条件下,出水COD 去除率达95 %以上, NH +4 -N 去除率达61 %, TP 去除率达55 %, 表明通过分离筛选嗜盐菌处理高盐废水具有可行性。
(3)依次提高有机负荷(COD)为288 、387 、473 、618 、701 mg/L , 盐度稳定在3 .5 %, 出水COD 均在1 h内降到30 mg/L以下,COD 去除率达95 %以上。表明进水有机物负荷的增大并未对出水有机物浓度带来很大的影响, 该系统耐有机负荷冲击能力比较强。
(4)改变系统进水盐度, 发现系统COD 去除率变化不大, 而NH +4 -N去除率有明显变化, 在3 .5 %和5 .0 %的盐度下NH +4 -N去除率分别为61 %和31 %。
本文转自“乾来环保”
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在“绿水青山就是金山银山”的时代号角声中,国家“双碳”战略与生态文明建设的奋进蓝图正徐徐展开。作为全球综合性能源企业的领航者,国家能源集团以“无废集团”建设试点为笔墨,在这幅壮阔画卷上挥毫泼墨,书写着能源行业绿色转型的崭新篇章。一年来,从黄土高原到东海之滨,从井下采掘到云端数据,
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
各有关单位:2025年是“十四五”规划收官之年,随着国内固危废行业立法与监管进一步趋严,危险废物处置行业逐渐走向规范化、标准化。但工业废盐及高盐废水的大量产生及其综合利用、无害化处置一直是国内的难题。近两年由于我国部分地区土地资源匮乏,与之填埋所产生的系列环境风险依然存在,各级政府也
各有关单位:钢铁工业用水具有需求多样、水质波动大、管网复杂、废水处理成本高、污(废)水和污泥难处理等特点。为贯彻执行节水优先、系统协同治理理念,提高水资源利用率、降低吨钢新水消耗,优化水网络,发展智慧水务,实现废水“零排放”,促进钢铁工业用水绿色低碳发展,中国金属学会将于2025年7月2
近日,中国化学东华科技中标中海壳牌惠州三期乙烯项目污水处理场设计、采购、施工(EPC)总承包项目,中标金额为5.58亿元,是目前公司在石油化工废水处理领域承接的最大规模的总承包项目。项目位于国家重点发展的七大石化产业基地之一的广东省惠州市大亚湾经济技术开发区石化工业区,建设内容包括污水
近日,2024年度中国机械工业联合会“机械工业科学技术奖”揭晓,电站集团摘得两个二等奖、两个三等奖。其中,“高湿环境下汽轮机叶片水蚀安全性评判及防护关键技术与应用”“燃煤电厂脱硫废水高效处理关键技术及工程应用”两项目获科技进步奖二等奖,“重型燃气轮机数字化智能化运维关键技术及应用”“
各有关单位:随着社会对水环境质量要求的不断提高,以及更为严格的各地方标准的陆续出台,老旧污水处理厂的提价、提标改造和建制镇的污水处理设施新建将成为新的增长点;工业废水处理也是我国环保产业的重要分支,也是实现碳中和的重要路径之一,未来随着各地工业园区建设的推进,以及政策的引导,工业
近日,中信环境技术中标新疆图木舒克市经济开发区达坂山工业园高盐废水处理厂施工运营一体化(PC+O)项目,中标价:134219012.3000元,运营报价20.69元/m。本项目设计为5000立方米/天的高盐废水处理厂,通过提纯废水中的硫酸钠实现再利用,并用部分硫酸钠制酸碱后回用于生产,实现高浓含盐废水资源化,
8月23日,新疆生产建设兵团三师图木舒克经开区达坂山工业园高盐废水处理厂建设项目施工及运营一体化总承包(PC+O)中标候选人公示第2次公示。中标候选人如下:中标候选人第一名:中信环境技术投资(中国)有限公司(联合体单位:四川中喻环境治理有限公司),投标报价:134219012.3000元,运营报价20.6
据工源气浮消息,8月16日,由锡东新城商务区管委会、锡山区科技局、清华大学科研院主办的“清锡未来行”(第四期)清华老师进锡山活动在中电(无锡)数字芯谷举行。区委副书记、副区长葛敏,清华大学科研院副院长李千,清华大学科研院、清华大学相关合作院系的20多位教授专家及50多家锡山区创新型企业
北极星水处理网获悉,7月11日,中国石化发布中天合创能源有限责任公司中天合创水务部废水、高含盐、矿井水高压反渗透框架招标反渗透膜招标公告。公告如下:(重招)2024-2026中天合创水务部废水、高含盐、矿井水高压反渗透框架招标采购招标公告1.招标条件本招标项目(重招)2024-2026中天合创水务部废
厌氧氨氧化(Anammox)工艺因无需外加有机碳源,污泥产量低,运行成本低、脱氮效率高等优点,适用于处理低碳氮比的高氨氮废水。而实际废水中含有浓度和种类不同的有机物,通常认为有机物的存在会对厌氧氨氧化菌产生负面影响。此外,厌氧氨氧化污泥颗粒化可以最大程度持留微生物量,强化功能菌的增殖,并在一定程度上缓解环境变化导致的脱氮效率下降,是解决这一问题的有效途径。然而如何通过提高厌氧氨氧化颗粒污泥自身的性能,提高厌氧氨氧化系统的抗有机物干扰能力显得尤为必要。
在食品加工过程中常需使用含盐溶液或干盐来获得最终产品;随着人们生活水平的提高和需求增大,海水养殖业快速发展,并产生了大量含盐养殖废水;工厂在满足社会运转的同时,会出现大量的脱硫、电渗析浓缩液等废水;这些源头产生的大量含盐废水亟须处理。
高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。
高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特点,还存在很多需要
[摘要]化工生产过程产生多种工业废水,其中部分工业废水含有大量的盐分(如F-、Cl-、SO42-等离子),被称为高盐废水。高盐废水会造成河水污染及环境污染,因此如何处理高盐废水是化工生产中的一项大问题;同时,在生产及处理过程中液体中含有的F-对设备管道等的腐蚀也需要解决。文中论述了一些常用的处理
1高盐废水处理概述高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特
摘要论述了嗜盐菌的形态特征、营养构成、生理特性和嗜盐机理,以及利用其特性在含盐有机废水处理中的应用,综述了国内外生化处理高含盐量有机工业废水的实验研究成果、在实际废水工程中的应用及其发展方向。对嗜盐菌的培养与驯化有一定的参考价值,对含盐废水处理工程的设计与运行有指导意义。关键词:
摘要:高盐废水中的高含盐量对微生物的生长有很强的抑制作用,增加了含盐废水生物处理的难度。本文从盐度对生物处理系统有机物去除率和对脱氮、除磷效果影响等三个方面,综述了高盐废水生物处理的研究进展情况,分析了高盐废水生物处理的可行性,指明了高盐废水生物处理今后的研究方向,以期为今后高效
摘要:国内外相关的高盐废水处理文献,简要介绍了高盐废水及高盐废水的来源。综述了生物处理法、吸附法、萃取法、焚烧法、电化学氧化法、芬顿氧化法、湿法催化氧化等方法在废水溶液中总溶解性固体物3.5%以上时,处理高盐废水工艺的最新研究进展。总结了各种处理工艺的优缺点,提出了今后高盐废水处理工
摘要:从城市污水处理厂的活性污泥中驯化分离出2株耐盐高效菌:地衣芽孢杆菌(Bacilluslicheniformis)O1和枯草芽孢杆菌(Bacillussubtilis)Y5制备复合菌剂,用于高盐生活污水生物处理工艺快速启动研究研究表明,在SBR系统中连续投加复合菌剂(制备的配比为1∶1),在30d完成快速启动(TOC去除率85%)
摘要:环氧树脂高盐废水是目前较难处理的工业废水之一。采用混凝联合生物强化工艺:通过混凝过程进行预处理后,投加嗜盐菌进行生物强化考察盐度变化对系统降解有机物的影响以及污泥性状的变化情况。结果表明,当废水中氯离子浓度达到驯化目标10g/L时,系统对COD的去除率仍稳定在85%左右;以没有投加嗜
高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。
高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特点,还存在很多需要
1高盐废水处理概述高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特
摘要:高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。关键词:高盐废水;处理现状;研究进展引言现阶段,规模化处理高盐废水仍然存
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!