登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
厌氧氨氧化(Anammox)工艺因无需外加有机碳源,污泥产量低,运行成本低、脱氮效率高等优点,适用于处理低碳氮比的高氨氮废水。而实际废水中含有浓度和种类不同的有机物,通常认为有机物的存在会对厌氧氨氧化菌产生负面影响。此外,厌氧氨氧化污泥颗粒化可以最大程度持留微生物量,强化功能菌的增殖,并在一定程度上缓解环境变化导致的脱氮效率下降,是解决这一问题的有效途径。然而如何通过提高厌氧氨氧化颗粒污泥自身的性能,提高厌氧氨氧化系统的抗有机物干扰能力显得尤为必要。
对此,苏州科技大学陈重军副教授课题组开展了如下研究:①不同浓度有机物长期胁迫对厌氧氨氧化颗粒污泥脱氮效能、理化性质和微生物群落结构的影响;②生物炭介导下有机物对厌氧氨氧化颗粒污泥的脱氮性能、理化性质和脱氮除碳代谢途径的影响。相关研究成果发表于Journal of Cleaner Production、Journal of Environmental Science和《中国环境科学》,以期为厌氧氨氧化颗粒污泥的研究和工程应用提供参考。
研究1:不同浓度有机物长期胁迫对厌氧氨氧化颗粒污泥的影响
反应器运行效能如图1所示,在0、50、100、150和200 mg/L的COD浓度的胁迫下,随着COD的增加氨氮的去除率呈下降趋势,分别为97.71 %、97.23 %、83.87 %、68.11 %和46.52 %,而亚硝态氮的去除率维持在96.78~98.62 %。各胁迫浓度下,总氮去除率分别为97.20 %、98.00 %、92.12 %、85.06 %和75.02 %,说明低浓度的有机物(50 mg/L)通过使厌氧氨氧化菌和异养反硝化菌之间形成稳定的协同作用提高了总氮的去除率(见图1)。而有机物浓度为150 mg/L和200 mg/L时颗粒污泥的平均粒径出现先增长后下降的趋势,且颗粒污泥的SVI值升高,沉降性能变差(见图2)。通过SEM观察颗粒污泥的微观结构发现颗粒污泥表面有明显的裂痕,推测有机物浓度超过150 mg/L时,长期胁迫下会造成颗粒污泥的解体。当有机物浓度超过50 mg/L时厌氧氨氧化颗粒污泥的优势门由Chloroflexi变为Proteobacteria。此外有机物长期胁迫下Candidatus Brocadia替代Candidatus Kuenenia成为厌氧氨氧化菌的优势属。
图1 不同有机物浓度下厌氧氨氧化颗粒污泥的脱氮性能
图2 不同有机物浓度下厌氧氨氧化颗粒污泥的理化性质
研究2:生物炭介导下有机物对厌氧氨氧化颗粒污泥的影响
课题组前期研究发现,生物炭存在条件下可以促进厌氧氨氧化菌的增殖。本研究采用竹炭为研究对象,分析了竹炭存在下有机物对厌氧氨氧化颗粒污泥的影响。研究发现,运行120天后,在不添加竹炭条件下,随着COD的浓度增加,氨氮的去除效率逐渐降低。当COD浓度为50、100和150 mg•L-1时,氨氮平均去除率为89.4 %,77.4 %和66.2 %。然而加入竹炭后,平均氨氮去除效率分别提高到96.2 %,84.5 %和71.5 %。当COD浓度为50、100和150 mg•L-1时,平均TN去除效率分别为85.9 %,82.6 %和81.4 %,加入竹炭后,平均TN去除效率分别为92.3 %,88.9 %和84.6 %,添加竹炭的反应器对TN的去除率提高3.1~6.4 %(见图3)。
图3生物炭介导下有机物对厌氧氨氧化颗粒污泥脱氮的影响过程
投加竹炭对厌氧氨氧化颗粒污泥的理化性质也造成显著的影响,研究发现,随着COD浓度的增加,EPS逐渐减小,过量的COD将抑制厌氧氨氧化菌的竞争优势,不利于厌氧氨氧化菌 EPS的分泌,加竹炭时的EPS比不加竹炭时要高。由于EPS的分泌,不添加竹炭条件下平均粒径0.8 mm,而添加竹炭上升至1.2 mm(见图4)。研究也发现,投加竹炭可使颗粒污泥表面结构更致密,有机碳源胁迫下可维持完整。竹炭孔隙内附着大量的污泥,为功能微生物的寄居、生长和繁殖提供舒适的环境。
图4 生物炭介导下有机物对厌氧氨氧化颗粒污泥理化性质的影响
利用 R 语言的 igraph 包和 Hmisc 包对反应器污泥样品相对丰度前 300 的属进行相关性系数的计算,生成微生物共现性网络图(见图5)。厌氧氨氧化菌优势菌属Candidatus Brocadia和Candidatus Jettenia与Halomonas相连接,而添加竹炭的处理组Halomonas的相对丰度均高于不添加炭的对照组。据报道Halomonas是一种中度嗜盐菌,具有反硝化作用,可以产聚羟基丁酸酯(poly hydroxyalkanoates, PHA),而PHA可以保护微生物细胞受极端环境胁迫同时被储存在胞内作为缓释碳源。较一般的异养反硝化菌而言,Halomonas不易被环境扰动从而碳代谢更加稳定,这可能是Candidatus Brocadia、Candidatus Jettenia的相对丰度在有机物和竹炭共存条件下下降幅度较小的原因。
图5 共生网络图
研究表明编码联氨脱氢酶(hydrazine dehydrogenase , HDH,EC:1.7.2.8)的基因hdh和编码联氨合成酶(hydrazine synthase , HZS,EC:1.7.2.7)3个亚基的基因hzsABC只存在于厌氧氨氧化体中,如图6氮代谢功能基因表达热图所示,当C/N比为0.28和0.83时竹炭促进了hdh和hzsABC基因的表达,然而C/N为0.56时的结果却与之相反。
图6 氮代谢功能基因表达热图
糖酵解途径(glycolytic pathway , EMP)和三羧酸循环(tricarboxylic acid cycle,TCA cycle)是大多数生物所共有的糖分解代谢途径,因此有必要对两个通路的功能基因进行进一步分析。图7为EMP和TCA功能基因代谢热图,可以看出从葡萄糖到丙酮酸共有十步连续的酶促反应,其中三步最主要的限速步骤分别为:葡萄糖在葡萄糖激酶(glucokinase, EC:2.7.1.2)的催化下生成葡萄糖-6-磷酸、果糖-6-磷酸在果糖磷酸激酶(phosphohexokinase, EC:2.7.1.11)催化下生成果糖-1,6-二磷酸以及磷酸烯醇式丙酮酸在丙酮酸激酶(pyruvate kinase, EC:2.7.1.40)的催化下生成丙酮酸,三个反应均为不可逆反应。当C/N比为0.28和0.83时,竹炭的投加显著促进了葡萄糖激酶基因glk、果糖磷酸激酶基因PFK、丙酮酸激酶基因PK的表达,而C/N为0.56时glk和PFK在炭处理下是下调的。此外,TCA循环也受到一系列酶的调控,其中丙酮酸脱氢酶系(丙酮酸脱氢酶E1,二氢硫辛酰转乙酰基酶E2,二氢硫辛酰胺脱氢酶E3,EC:1.2.4.1,EC:2.3.1.12,EC:1.8.1.4)催化的丙酮酸氧化脱羧形成乙酰辅酶A过程是连接EMP和TCA的中心环节(不可逆)。丙酮酸脱氢酶系是一个位于线粒体内膜上的多酶复合体,涉及aceE、DLAT和DLD三个功能基因,不同有机物浓度下三个功能基因的表达量均表现为加炭处理组大于对照组,说明竹炭有效促进了EMP途径与TCA循环的衔接。
图7 糖酵解途径功能基因表达热图和三羧酸循环途径功能基因代谢热图
小结与展望
有机物对厌氧氨氧化的影响是一个老生常谈但又历久弥新的研究焦点,也是厌氧氨氧化工艺工程应用过程中无可规避的现实问题。本研究探明了不同浓度有机物对厌氧氨氧化颗粒污泥脱氮效能和微观结构特性的影响,探索了外加介体材料(如生物炭)对缓解有机物抑制作用的过程特性及工作机制。研究结果将为厌氧氨氧化颗粒污泥的工程化应用提供一定的借鉴意义。
作者简介
陈重军,苏州科技大学副教授,硕士生导师2012年博士毕业于浙江大学,现任江苏水处理技术与材料协同创新中心管理办公室副主任、环境工程系副主任,入选江苏省“青蓝工程”优秀青年骨干教师、江苏省双创计划。主持国家自然科学基金、中国博士后科学基金、江苏省自然科学基金等20多项;第一或通讯作者在Crit Rev Env Sci Tec、Bioresour Technol、Sci Total Environ、J Clean Prod、中国环境科学、环境科学等期刊发表论文50多篇,论文总被引超过2000次,合作编著江苏省重点教材2部,授权国家专利15项。兼任中国城镇供水排水协会青年工作者委员会委员、江苏省环境科学学会青年工作委员会委员、《中国给水排水》、《工业水处理》青年编委。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
2025年2月11日,澳门有机资源回收中心项目开工仪式在项目现场顺利举行。澳门有机资源回收中心项目简介本项目为EPC+O(总承包+运营)模式,合同总金额18.67亿澳门元,以“未来浮岛,空中花园”为设计主题,融入澳门“岛”,展现科技“芯”。项目拟采用“高效预处理+厌氧消化+沼气发电+好氧堆肥”的餐厨
沼气作为一种清洁绿色能源,在可再生能源舞台上扮演着不可或缺的角色。近日,沼气发电领域传来了好消息,北京排水集团高安屯再生水厂沼气发电项目正式并网发电。未来,高安屯再生水厂将综合利用沼气发电、光伏发电、水源热泵等可再生能源,充分实现电能自给,打造全国首座电能自给的再生水厂。(来源:
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
5月28日,旺能环境股份有限公司联合中铁一局集团有限公司澳门分公司、同方环境股份有限公司及澳马建筑集团有限公司与澳门特别行政区政府签署《有机资源回收中心的设计、建造及经营批给合同》。浙江旺能生态科技有限公司总经理匡彬作为旺能环境代表签署协议,美欣达集团董事会主席单建明出席签约仪式。
在脱氮工艺中氨氮转化成氮气有很多的途径,也存在很多难以控制的中间过程及中间产物,恰恰是这些难控制的中间过程决定了最新的脱氮工艺的研究方向,本文将介绍一下短程硝化及短程反硝化的内容!什么是短程硝化?废水生物脱氮,一般由硝化和反硝化两个过程完成,而硝化过程分为氨氧化阶段和亚硝酸盐氧化
为防治环境污染,推动电子工业水污染防治技术进步,生态环境部发布《电子工业水污染防治可行技术指南》(HJ1298—2023)(以下简称《指南》),于近日正式实施。生态环境部水生态环境司有关负责人就《指南》的制订背景、主要内容等,回答了记者的提问。问:《指南》制订背景是什么?答:我国是电子信息
北京排水集团建设的国际上第一座城市污水厌氧氨氧化项目日前通过技术成果鉴定。作为北京市重大科技项目,该项目是国际上率先建成并成功运行的一座典型的城市污水厌氧氨氧化示范工程,研究成果达到国际领先水平。据悉,该项目设计规模为7200立方米/天,自2019年投入运行后,经过3个冬季低温期考验,成功
编者按:厌氧氨氧化(ANAMMOX)因无需氧气和有机物而被冠以可持续污水处理技术,以致学界对其研究趋之若鹜并愈演愈烈。然而,20多年过去了,过热的研究与少有的工程应用形成了巨大反差,这一现象耐人寻味。因此,有必要对产生这种反差现象的原因进行理性分析,以期获得对ANAMMOX技术工程应用场景以及运
盛夏午后,阳光不燥。武汉市东湖高新区红旗湖“清水绿岸,鱼翔浅底”。这个经过启动修复的水体生态修复项目,在微生物作用下,经过几场细雨的滋润,已经宛若生机盎然的“热带丛林”。无独有偶,在芜湖市江东水生态公园,通过以微生物为中心所建的生态稳定塘,水中水草摇曳、藻荇交横。近年来,看似不起
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
据首创环保集团消息,近日,首创环保集团作为工艺包提供商,成功签约浙江海宁市丁桥污水处理厂设施设备更新提升工程项目。该项工程将采用首创环保集团自主研发的CREATE好氧颗粒污泥技术,对污水厂一期工程SBR生物处理技术进行原位改造,实现生物处理段处理水量由4万吨/日提升至7万吨/日。本次好氧颗粒
作为省国资委A类拓新企业、粤海水务下属科研创新核心平台公司,粤海科技公司依托粤海水务产业优势资源,深耕水务新工艺、新材料及低碳节能技术开发应用、智慧水务、环境监测、水务增值业务等领域,积极打造原创技术策源地、培育发展新质生产力、塑造发展新动能。2024年,粤海科技公司涌现一批科技创新
5月16日至17日,2024给水大会暨第二届粤港澳大湾区水安全联合创新中心论坛在广州南沙隆重举行。此次高规格水业盛会云集全国千名权威专家、名校学者和名企代表,聚焦前沿科技创新,深入探讨城市群给水安全保障和水资源可持续利用,有效促进了全国水务行业资源的深度交流融合,对于凝聚创新发展新质生产
为及时反映生态环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2023年行业评述及2024年发展展望》,供环保企事业单位、专家和管理者参考。2023年行业评述01#主要政策标准#2023年是全面贯彻党的二十大精神的开局之年,是三年新冠疫情防控转段后经济恢复发展的一年,国家
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
在脱氮工艺中氨氮转化成氮气有很多的途径,也存在很多难以控制的中间过程及中间产物,恰恰是这些难控制的中间过程决定了最新的脱氮工艺的研究方向,本文将介绍一下短程硝化及短程反硝化的内容!什么是短程硝化?废水生物脱氮,一般由硝化和反硝化两个过程完成,而硝化过程分为氨氧化阶段和亚硝酸盐氧化
【社区案例】现场检测条件有限,两级处理,生化末端水温34.8°,末端溶氧仪损坏,平时都是2.3mg/L左右上浮的泥块颜色发黄不是老泥最近这两天上浮厉害能看到水中气泡一般这种情况怎么解决?排泥上浮的也排不出去通过楼主的描述和照片,该浮泥应该为典型的反硝化浮泥,二沉池浮泥现象在城市污水处理厂和
首创环保集团的“双碳”实践向前又迈进了一大步。近日,公司所属新乡市生活垃圾焚烧发电项目成功注册为国际核证自愿减排标准(VCS,VerifiedCarbonStandard)项目,成为国际组织VERRA中首批垃圾焚烧类项目。新乡市生活垃圾焚烧项目的成功注册,意味着首创环保集团在全面进行碳盘查、摸清了碳排放家底后
近日,首创环保所属新乡市生活垃圾焚烧发电项目成功注册为国际核证自愿减排标准(VCS,VerifiedCarbonStandard)项目,成为国际组织VERRA中首批垃圾焚烧类项目。新乡市生活垃圾焚烧项目的成功注册,意味着首创环保集团在全面进行碳盘查、摸清了碳排放家底后,在“双碳”实践路上取得的又一重要成果,此
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!