登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
3 白色烟羽的危害及治理的经济与环境效益
3.1 白色烟羽的危害
燃煤电厂的白色烟羽(湿烟羽)是由于烟气通过烟囱排入大气后因温度下降,烟气中的气态水凝结引起的可见烟羽。凝结水是没有污染的,所以白色烟羽的危害取决于烟气中自身的污染物。烟气中的污染物可以分为常规污染物和非常规污染物两类。
常规污染物即目前日常监测的SO2、NOx 和烟尘,其中烟尘实际上是指可过滤颗粒物(FPM),即燃煤产生的飞灰以及湿法脱硫产生的石膏等,这部分物质可被滤膜捕集并烘干后称重测量。超低排放后燃煤电厂的常规污染物排放浓度已经很低,对环境的影响很小。
非常规污染物主要有Hg 等重金属及其化合物,Hg 等重金属及其化合物多数以颗粒态形式存在于可过滤颗粒物中而被脱除,但也有少数以气态形式存在的较难脱除。可凝结颗粒物(CPM)是指烟气在烟囱内以气相(包括雾状颗粒)形式存在,但排入大气环境后由于温度下降会在很短的时间内凝结成颗粒物,主要由SO3 气溶胶、挥发性有机物(即VOC) 、SCR 装置逃逸的微量NH3 以及雾状液态水携带的溶解性总固体等污染物组成[13]。溶解性总固体主要有SO42 –、Cl–、F–、NO3–、Ca2+、Mg2+等离子组成的无机盐,燃煤电厂超低排放改造完成后溶解盐的质量浓度在0.15~2 mg/m3[14]。挥发性有机物主要由燃烧过程产生的酯类、烷烃类以及少量苯环类物质组成,有机物组分在可凝结颗粒物中所占的比重在4.6%~27.7% 之间[15-16]。SO3 在脱硫后的烟气中主要以硫酸雾形式存在,超低排放改造后质量浓度均值从23 mg/m3 降低到8.9 mg/m3[17]。有测试结果显示,湿法烟气脱硫工艺和湿式电除尘器对CPM 的脱除效率分别达到57.59%、69.92%[18-19]。低低温电除尘技术对CPM 也有较高的脱除效率。尽管非常规污染物浓度比常规污染物浓度低很多,但少量的非常规污染物对环境的影响也不容忽视, 如酸雾、Hg 及其化合物的污染当量值分别为0.6、0.000 1。因此,需要重视Hg、CPM 等非常规污染物对环境的影响,必要时应当进行深度减排。
3.2 白色烟羽治理技术
白色烟羽治理技术主要包括烟气冷凝、烟气加热、烟气冷凝再热工艺。烟气冷凝工艺主要实现污染物减排、回收烟气中水分以及减弱视觉影响。烟气加热工艺主要实现消除烟羽视觉影响及提高污染物扩散效率。烟气冷凝再热具有两者的共同优点。具体技术分类详见图1。
3.3 白色烟羽治理的经济性分析
如果采用烟气加热技术进行烟羽治理,国内各地出台的政策一般均沿用德国2002 年以前的法规要求,脱硫后湿烟气加热至75~80 ℃ 再排放。根据国内多个工程案例的实际情况, 以水媒式GGH 加热技术为例,改造单位投资约增加60 元/kW,由于加热烟气损失的热量,折算为单位发电煤耗约增加2 g/(kW·h),运行成本约增加0.15 分/(kW·h)。如果采用烟气冷凝技术,成本增加主要分为投资成本、循环泵电耗、引风机增加能耗等。表4 给出了3 种主流烟气冷凝工艺的投资成本和运行成本,改造的单位投资约增加40 元/kW。根据目前的实际运行成本,初步测算改造后运行成本约增加0.10 分/(kW·h)(按年运行5 000 h,标煤价格500 元/t 计算)。
3.4 白色烟羽治理的环境效益
(1)节水效益。
如果采用烟气冷凝技术治理白色烟羽,随着烟温降低,烟气中饱和含水量下降,析出的水量增多,回收水(除了浆液冷却技术将冷凝水直接混入浆液中,导致冷凝水无法直接回用外,其他处理技术均有回收水)可用于电厂其他用途(见图2)。以300 MW 机组为例,烟温分别为60 ℃、55 ℃、50 ℃ 时,降低1 ℃ 时节水量分别约为12.7 t/h、9.4 t/h、7.4 t/h。按降温5 ℃ 考虑,温度由50 ℃ 降低到45 ℃ 时,300 MW 机组每小时可节约水量约31.6 t,年经济效益约41.9 万元(按5 000 h、2.65元/t 计)。实际的节水效益与当地水价、负荷、实际降温幅度有关,对于西部水资源匮乏地区,特别是以水定电的燃煤电厂,节水的经济效益和社会效益更为重要。
(2)污染物减排。
如果采用直接加热技术进行治理,政策上一般要求脱硫后湿烟气加热至75~80 ℃ 再排放,对于污染物减排并无改善。相反,由于加热烟气损失的热量,折算为单位发电煤耗增加约为2 g/(kW·h)。2017 年全国平均发电煤耗为294.17 g/(kW·h),按超低排放电厂常规污染物要求,烟尘排放质量浓度应少于10 mg/m3、SO2 排放质量浓度应少于35 mg/m3、NOx 排放质量浓度应少于50 mg/m3、合计不大于95 mg/m3 来核算,每kW·h 发电煤耗增加2 g,则相当于常规污染物排放量增加0.65 mg/m3。可见,采用直接加热的方式消除白色烟羽,不仅不减少污染物排放,反而会增加污染物排放。
如果采用烟气冷凝技术治理白色烟羽,常规污染物基本不减排, 但可有效捕集可凝结颗粒物, 主要是烟气中的硫酸雾和液滴中的溶解盐等[20-21]。溶解盐只能溶解在液态水即液滴中,根据实测和计算,满足超低排放要求的采用湿式石灰石–石膏法烟气脱硫工艺的电厂,烟气中的溶解盐质量浓度一般不超过1 mg/m3。按50% 的去除效率计算,溶解盐仅降低0.5 mg/m3,以300 MW机组为例,每年减排量为2.9 t,排污税每年减少0.7 万元。此外,对烟气中SO3 的减排量取决于烟气中的SO3 浓度和烟气的冷凝温度,超低排放处理后白色烟羽中的SO3 浓度一般较低,因此,其减排效果也很有限。
总之, 对于已达到超低排放要求的燃煤电厂,治理白色烟羽的环境效益并不明显。加热技术会增加污染物的排放,冷凝技术虽然可减少污染物的排放,但非常有限,对环境改善的贡献并不明显,而且会使边际成本明显增加,权衡之下应把这部分投资用在更需要的环境治理方面。
(3)消除白色烟羽视觉影响。
消除白色烟羽的视觉影响对于提高周边民众对环境改善的满意度具有一定的意义,也可以提高污染物的扩散效果。采用烟气直接加热技术的能耗较高;烟气冷凝技术可减轻白色烟羽的视觉影响,但除非将烟气冷却到接近环境温度,否则无法彻底消除;较为成熟的技术路线是采用先冷凝析出饱和水蒸汽,再进行小幅再加热的技术,可达到消除烟羽视觉影响的效果,并有效降低加热能耗。
4 结论
( 1) 燃煤电厂有色烟羽包括石膏雨、烟囱雨、白色烟羽、灰黑色烟羽、蓝色烟羽和黄色烟羽等,不同有色烟羽的成因各不相同,危害及治理技术也不相同,应依据具体的有色烟羽进行针对性治理。
(2)燃煤电厂超低排放后,普遍存在的是白色烟羽,有少数燃用中、高硫煤的电厂会出现蓝色烟羽。白色烟羽主要是存在视觉影响,本身对环境影响不大,治理能收获的环境效益较小;蓝色烟羽中硫酸雾浓度较高,应进行治理。
(3)蓝色烟羽是排放烟气中硫酸雾浓度较高造成的,目前中国尚无燃煤电厂硫酸雾(SO3)的排放标准,各地出台的治理要求也非常混乱。治理烟气中的SO3 主要有3 条途径,一是降低燃煤含硫量并控制SCR 烟气脱硝工艺中SO2/SO3 转化率, 二是提高低低温电除尘器、湿式石灰石–石膏法烟气脱硫工艺、湿式电除尘等烟气治理设施对SO3 的协同脱除效率,三是向烟气中喷入碱性物质,中和烟气中的SO3。烟气加热对治理蓝色烟羽没有任何效果,蓝色烟羽治理对降低当地环境空气中的PM2.5 较为有利,投资与运行成本不是很高。
( 4) 白色烟羽是烟气中的气态水排入大气后,因温度下降冷凝成微细雾滴造成的。可通过加热相对减少烟气中气态水进入大气环境后冷凝析出的量来减轻或消除白色烟羽现象,但加热耗能会增加污染物排放。为了减少耗能,可采用先冷凝烟气析出部分水,再对烟气进行小幅加热的方式,这样可回收烟气中的部分气态水,但污染物减排量并不明显,不宜全面推广。
参考文献:
[1]姚增权. 火电厂烟羽的传输与扩散[M]. 北京: 中国电力出版社,2003.
[2]欧阳丽华, 庄烨, 刘科伟, 等. 燃煤电厂湿烟囱降雨成因分析[J]. 环境科学, 2015, 36(6): 1975–1982.
OUYANG Lihua, ZHUANG Ye, LIU Kewei, et al. Analysis onmechanism of rainout carried by wet stack of thermal power plant[J].Environmental Science, 2015, 36(6): 1975–1982.
[3]郭彦鹏,潘丹萍,杨林军. 湿法烟气脱硫中石膏雨的形成及其控制措施[J]. 中国电力, 2014, 47(3): 152–154, 159.
GUO Yanpeng, PAN Danping, YANG Linjun. Formation and controlof gypsum rain in wet flue gas desulfurization[J]. Electric Power,2014, 47(3): 152–154, 159.
[4]吴炬,邹天舒,冷杰,等. 采用混合式烟气再热技术治理火电厂“石膏雨”[J]. 中国电力, 2012, 45(12): 16−30, 41.
WU Ju, ZOU Tianshu, LENG Jie, et al. Elimination of gypsum rainwith admixing and heating cleaned flue gas[J]. Electric Power, 2012,45(12): 16−30, 41.
[5]聂鹏飞, 张宏宇. 火[5] 电厂无 GGH 湿法脱硫机组烟囱降雨原因分析及对策[J]. 工业安全与环保, 2012, 38(2): 4–8.
NIE Pengfei, ZHANG Hongyu. Causes resulting in stack “rainout”of wet flue gas desulphurization for the thermal power plant withoutGGH and its ermeasures[J]. Industrial Safety andEnvironmental Protection, 2012, 38(2): 4–8.
[6]刘永久. 火电厂烟囱内烟气温降及饱和烟气的凝结水量计算[J].热力发电, 2008, 37(2): 72–73.
[7]黄永阔. 焦炉烟囱冒烟的原因及处理方法[J]. 中国石油和化工,2016, 32(增刊1): 154.
[8]王卫群, 华伟, 孙虹. 燃气轮机烟囱冒“黄烟”原因分析及解决对策[J]. 电力科技与环保, 2016, 32(1): 33–35.
WANG Weiqun, HUA Wei, SUN Hong. The causes and solutions ofgas turbine chimney emission yellow smoke[J]. Electric PowerTechnology and Environmental Protection, 2016, 32(1): 33–35.
[9]刘东东. 转炉一次风机机后烟囱冒黄烟问题探索和研究[J]. 科技信息, 2012(9): 463.
LIU Dongdong. An exploration and analysis of the problem of yellowsmoke from the chimney behind the converter’s first fan[J]. Science& Technology Information, 2012(9): 463.
[10]刘志坦, 惠润堂, 杨爱勇, 等. 燃煤电厂湿烟羽成因及对策研究[J].环境与发展, 2017, 29(10): 43–46.
LIU Zhitan, HUI Runtang, YANG Aiyong, et al. Research on causesand ermeasures of the wet plume in coal-fired power plant[J].Environment and Development, 2017, 29(10): 43–46.
[11]陈焱, 许月阳, 薛建明. 燃煤烟气中SO3 成因、影响及其减排对策[J]. 电力科技与环保, 2011, 27(3): 35–37.
CHEN Yan, XU Yueyang, XUE Jianming. Discussion on flue gasSO3 forming mechanism, impact and its ermeasures[J]. ElectricPower Technology and Environmental Protection, 2011, 27(3):35–37.
[12]陶雷行, 翁杰, 李晓峰, 等. 燃煤烟气超低排放全流程协同削减三氧化硫效果分析[J]. 中国电力, 2018, 51(3): 177–184.
TAO Leixing, WENG Jie, LI Xiaofeng, et al. Analysis oncoordinated reduction of SO3 in whole process of ultra-low emissionin coal-fired flue gas[J]. Electric Power, 2018, 51(3): 177–184.
[13]李军状, 朱法华, 李小龙, 等. 燃煤电厂烟气中可凝结颗粒物测试研究进展与方法构建[J]. 电力科技与环保, 2018, 34(1): 37–44.
LI Junzhuang, ZHU Fahua, LI Xiaolong, et al. Progress and methodconstruction of condensable particles in flue gas of coal-fired powerplants[J]. Electric Power Technology and Environmental Protection,2018, 34(1): 37–44.
[14]朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23–26.
ZHU Fahua, LI Junzhuang, MA Xiuyuan, et al. Emission and controlof unconventional pollutants in the clean coal power flue gas[J].Electric Power Technology and Environmental Protection, 2018,34(1): 23–26.
[15]YANG H H, LEE K T, HSIEH Y S, et al. Filterable and condensablefine particulate emissions from stationary sources[J]. Aerosol & AirQuality Research, 2014, 14(7): 2010–2016.
[16]YANG H H. Emission acteristics and chemical compositions ofboth filterable and condensable fine particulate from steel plants[J].Aerosol & Air Quality Research, 2015, 15(4): 1672–1680.
[17]杨柳, 张斌, 王康慧, 等. 超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP 中的转化特性[J]. 环境科学, 2019, 40(1):121–125.
YANG Liu, ZHANG Bin, WANG Kanghui, et al. Conversioacteristics of combustible particles from coal-fired flue gas inWFGD and WESP[J]. Environmental Science, 2019, 40(1): 121–125.
[18]UEDA Y, NAGAYASU H, HAMAGUCHI R, et al. SO3 removalsystem for flue gas in plants firing high-sulfur residual fuels[J].Mitsubishi Heavy Industries Technical Review, 2012, 49(4): 6.[18]
[19]谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128–134.
TAN Houzhang, XIONG Yingying, WANG Yibin, et al. Study onsynergistic removal of multi-pollutants by WPTA[J]. Electric Power,2017, 50(2): 128–134.
[20]孙尊强, 朱俊. 冷凝再热技术消除湿烟羽在大型燃煤机组中的应用[C]// 2018 清洁高效燃煤发电技术交流研讨会论文集, 浙江嘉兴, 2018: 6.
[21]莫华, 朱杰. 燃煤电厂有色烟羽治理要点分析与环境管理[J]. 中国电力, 2019, 52(3): 10–15, 35.
MO Hua, ZHU Jie. Analysis of key points on curbing colored plumein coal-fired power plants and environmental management[J].Electric Power, 2019, 52(3): 10–15, 35.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
系统介绍了有色烟羽的定义及不同有色烟羽的成因,有色烟羽的治理应依据其成因及环境、政策需求进行针对性治理。
朱法华,孙尊强,申智勇.超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究朱法华,孙尊强,申智勇.超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J].中国电力,2019,52(8):1-7,25.ZHUFahua,SUNZunqiang,SHENZhiyong.Causeanalysisofcoloredsmokeplumeandrelatedstudiesoneconomi
针对电厂烟气低温余热回收和烟羽治理问题,以换热器技术和吸收式热泵技术为基础,设计了一种新型的烟羽治理系统。该系统以空气预热器后的烟气为热泵的驱动热源,驱动热泵回收烟气余热,加热凝汽器凝结水和进入烟囱的烟气。以某300MW燃煤机组为研究对象,建立烟羽治理系统传热模型,分析其余热回收和烟
对这次雾霾成因,有些“锅”电力行业、电力环保人不应该背。在全国人民抗击新型冠状病毒感染肺炎的特殊时期,有关春节期间雾霾天气形成原因的分析文章在新媒体平台大量传播。仔细一看,一些具有显著误导性的文章(论点)只是换了个标题老调重谈。这些文章发布是否合乎时宜,读者自有评判,但如果不正本
对这次雾霾成因,有些“锅”电力行业、电力环保人不应该背。文/王志轩在全国人民抗击新型冠状病毒感染肺炎的特殊时期,有关春节期间雾霾天气形成原因的分析文章在新媒体平台大量传播。仔细一看,一些具有显著误导性的文章(论点)只是换了个标题老调重谈。这些文章发布是否合乎时宜,读者自有评判,但
工厂停产、汽车停驶、餐饮停业,春节假期加之新冠肺炎疫情,各种生产生活排放大幅减少。然而,京津冀地区却多次出现严重雾霾天气。有观点认为是火电厂排放“白烟”所致,进而希望能够进行“消白”。究竟”白烟“是不是罪魁祸首?对此,一些业内人士给出了答案。成分以水雾为主不影响环境质量“白烟”就
很多人或许都注意到,家附近火电厂的那些大烟囱总是冒着浓浓白烟,往往心生疑问,这白烟污染环境吗,会加剧雾霾天气吗?火电厂烟囱排放的“白烟”“白烟”不污染其实,这些大烟囱里冒出的不是“烟”,是雾状水汽,我们看到的大大的“烟囱”也不是烟囱,而是冷却水塔。中国电力企业联合会王志轩介绍,火
今年春节比较特殊,车停驶了、工厂停产了,甚至连餐厅都不营业了,但京津冀等地依然出现了多次重度雾霾天气。对此,有人把近期出现的雾霾主要成因指向了“白烟”,也就是火电厂湿法脱硫后排放的湿烟气,进而希望能够“消白”。中国电力企业联合会副理事长王志轩强调,火电厂已普遍实施了超低排放改造,
在全国人民抗击新型冠状病毒肺炎的特殊时期,有关春节期间引起严重雾霾天气原因的分析文章在新媒体大量传播。仔细一看,一些具有显著误导性文章(论点)却只是换了个标题老调重谈,就像换了个马甲又重现江湖。这些文章发布是否合乎时宜,读者自有评判,但如果不正本清源,必然会对社会产生不良影响。简
总投资约1.6亿元、耗时1年多时间、4台发电机组实施综合升级改造……河北省衡水市按照国内最严标准改造的衡水发电厂烟羽综合治理工程项目近日全部完成,改造后机组能效水平得到提升,污染物排放大幅降低,对衡水市空气质量的逐步改善具有推动作用。衡水发电厂现有4台30万千瓦发电机组,排放的高湿烟气中
日前,陕西生态环境厅发布关于燃煤机组石膏雨、有色烟羽治理相关问题的复函。其中指出,陕西省生态环境厅关于燃煤机组石膏雨、有色烟羽治理相关问题的复函陕环大气函〔2019〕34号榆林市生态环境局:你局《关于燃煤机组石膏雨、有色烟羽治理相关问题的请示》(榆政环字〔2019〕127号)收悉。经研究,函
华能北方公司兴安热电厂锅炉,华能蒙东公司东海拉尔发电厂3、4号锅炉,华能蒙东公司扎兰屯热电厂6、7、8号锅炉,华能黑龙江分公司肇东热力(2台116兆瓦)1、2号锅炉,华能黑龙江分公司肇东热力(2台58兆瓦)3、4号锅炉等五个项目超低排放改造EPC工程中标候选人公示中标候选人第1名:西安西热锅炉环保工
近日,甘肃农垦西部水泥公司超低排放技改项目成功立项。该项目不仅是公司响应国家环保政策的重要举措,也标志着公司在绿色发展道路上迈出了坚实的一步。随着环保要求日益严格,公司顺应时代发展趋势,积极推进超低排放技改项目,并得到了属地环保部门的大力支持。项目预计总投资1621.77万元,获批环保
近日,由佰能电气控股公司佰能蓝天总承包的柳钢2#360m2烧结系统烟气超低排放改造工程圆满完成并顺利通过验收。该项目作为柳钢公司炼铁总厂烧结烟气SCR脱硝治理项目的关键子项,项目主要内容是对2#360m脱硫系统进行升级改造、新建一套先进的脱硝装置,旨在使烟气经过净化处理后满足钢铁行业超低排放标准
日前,包钢股份在投资互动平台上表示,自2020年以来,公司积极落实国家、自治区超低排放任务,实施了有组织排放、无组织排放和清洁运输3大类100余项超低排放改造项目,于2024年9月通过专家现场审核,成为自治区首家完成全流程超低排放改造公示的钢铁企业。2024年12月通过自治区生态环境厅重污染天气绩
北极星大气网获悉,3月12日,吉林奇峰化纤股份有限公司锅炉烟气系统超低排放改造工程(三期电站1-2#锅炉脱硫及除尘系统超低排放改造项目)中标候选人公示,其中脱硫系统由世纪华扬环境工程有限公司预中标,投标报价为1241.9860万元,除尘系统由龙净环保预中标,投标报价为1640.6322万元,公示如下:
北极星大气网获悉,3月12日,沈阳惠天棋盘山供热公司2×100t(h)锅炉超低排放改造总承包项目中标候选人公示,香山红叶集团联合沈阳清华锅炉有限公司预中标该项目,投标报价为28859652元。
3月10日,贵州锦屏和泰水泥有限公司超低排放改造项目设计+施工(含设备采购)总承包中标公示。香山红叶集团有限公司中标。该项目拟定采用高温高尘SCR尘硝一体化的技术及配套设施对窑尾进行改造,合同估算价2870万元。
3月10日,吉林亚泰水泥有限公司日产5000吨熟料生产线(5-6#)环保超低排放项目中标结果公示。安徽海螺川崎工程有限公司、郑州康宁特环境工程科技有限公司、西安建筑科技大学设计研究总院有限公司联合体中标,中标价格5400万元。该项目对5-6号熟料生产线窑头窑尾收尘器改造及生产线收尘设施滤袋更换,提
3月10日,华能兴安热电,东海拉尔发电厂,扎兰屯热电厂,肇东热力等五个项目锅炉超低排放改造EPC工程候选人公示。中标候选人第1名:西安西热锅炉环保工程有限公司,投标总报价:185740531元;中标候选人第2名:福建龙净环保股份有限公司,投标总报价:190179691元;中标候选人第3名:国能龙源环保有限
3月7日,华电能源股份有限公司富拉尔基发电厂碾子山热源替代改造工程40蒸吨及65蒸吨锅炉超低排放系统EPC总承包招标公告发布。详情如下:
3月9日,吉林梅河口市阜康热电有限责任公司5~12号锅炉脱硝超低排放改造工程EPC总承包项目候选人公示。第1中标候选人:广州市天赐三和环保工程有限公司,投标报价:19910200.00元;第2中标候选人:香山红叶集团有限公司,投标报价:20708250.00元;第3中标候选人:烟台龙源电力技术股份有限公司,投标
北极星电力网获悉,3月11日,新集能源发布投资者关系活动记录表,披露电力装机容量及在建3座燃煤电厂投产时间。电力装机容量公司控股板集电厂(一期2×100万千瓦、二期2×66万千瓦)、上饶电厂(2×100万千瓦)、滁州电厂(2×66万千瓦)、六安电厂(2×66万千瓦),全资新集一电厂、新集二电厂两个低
2月25日,中国能建建筑集团承建的华能陇东能源基地百万吨级二氧化碳捕集利用与封存研究及示范项目DCS机柜受电完成。该项目位于甘肃省庆阳市华能陇东能源基地,依托基地正宁2×1000兆瓦调峰煤电工程建设,采用燃烧后化学吸收二氧化碳捕集工艺路线,年捕集二氧化碳150万吨,捕集率大于90%,二氧化碳纯度
据美国能源信息署的评估,美国将在2025年退役12.3吉瓦(GW)的发电能力,与2024年相比,退役量增加了65%。2024年美国电网退役了7.5吉瓦的发电能力,这是自2011年以来退役发电能力最少的一年。计划退役的发电能力中,煤炭发电能力占最大比例(66%),其次是天然气(21%)。(来源:国际能源小数据作者:
2月8日,浙江省生态环境厅印发《燃煤电厂大气污染物排放标准(征求意见稿)》。详情如下:浙江省生态环境厅关于公开征求地方标准《燃煤电厂大气污染物排放标准(征求意见稿)》意见的通知为完善燃煤电厂大气污染物的排放管控要求,助力深入打好蓝天保卫战,以高水平保护支撑高质量发展,我厅组织对我省
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2024年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2024年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗295.93g/kWh,同比降低0.01g/kWh,平
2024年12月30日,全国首个基于大型燃煤电厂的有机朗肯循环(ORC)低温余热发电中试平台在国家电投重庆公司开州发电公司投运。该中试平台由重庆公司绿动能源公司与上海成套院、湘电动力等系统内外单位联合研发建设,以开州发电公司汽包连续排污水为热源,集合高效磁悬浮、一体式高速永磁向心透平发电机
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第2期)显示,CECI沿海指数中高热值煤种现货成交价格小幅上涨。曹妃甸指数继续上涨。进口指数中高热值规格品现货成交价格下降。CECI采购经理人指数连续两期处于收缩区间,分项指数中,除价格分指数处于扩张区间外,其他分指
CarbonBrief网站发表文章《分析:经合组织38个国家中仅剩五项燃煤电厂提案》:自2015年巴黎协定签署以来,经济合作与发展组织(OECD)地区在建新燃煤电厂的数量已降至历史最低水平。OECD是一个成立于1961年的政府间组织,拥有38个成员国,旨在促进经济增长和全球贸易。它包括世界上许多最富裕的国家。
近日,中国能建鸡西多能互补能源基地2×660兆瓦超超临界燃煤电厂项目获得黑龙江省发改委核准批复,中国能建投资公司取得900兆瓦风电指标,标志着中国能建东北首个多能互补能源基地成功落地。鸡西多能互补能源基地位于黑龙江省鸡西市,项目总投资约145亿元,总装机容量272万千瓦,采用“风火储一体化”
北极星电力网获悉,据外媒报道,印度尼西亚总统普拉博沃·苏比安托(PrabowoSubianto)宣布政府计划在未来15年内淘汰所有燃煤和其他化石燃料发电厂,同时大幅提高该国的可再生能源产能。“印度尼西亚拥有丰富的地热资源,我们计划在未来15年内逐步淘汰燃煤和所有化石燃料发电厂。我们的计划包括在此期
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2024年第43期)显示,本期(2024.11.14-2024.11.22)CECI曹妃甸指数、沿海指数中高卡现货成交价格均延续下降趋势,且降幅有所扩大,进口指数高卡煤种继续下降,中低卡煤种小幅上涨。CECI采购经理人指数在连续两期处于扩张区间后下
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!