登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
膜浓缩技术简介
01 反渗透技术
反渗透是以压力差为推动力,从溶液中分离出溶剂的膜分离过程。如图1所示,对料液侧施加压力,当压力超过膜两侧的渗透压差时,溶剂会逆着自然渗透的方向反向渗透,溶质被反渗透膜拦截。最终在膜的低压侧得到透过的溶剂,即产水;高压侧得到浓缩的溶液,即浓水。反渗透技术是一项成熟的脱盐技术,目前广泛应用于饮用水深度处理、工业废水回用、苦咸水脱盐、海水淡化等水处理领域。
海水淡化膜元件在传统的反渗透膜产品中具有最高的允许操作压力(不超过8.2 MPa),可将废水盐度浓缩至约70000 mg/L。然而,对于零排放处理,特别是针对水量较大的废水,经传统海水淡化反渗透膜浓缩后,浓水盐度较低,废水水量依然很大。因此,还需进行二次浓缩以降低后续蒸发结晶单元处理负荷,控制整体工艺的投资和运行成本。
1)反渗透膜材料
聚酰胺复合反渗透膜由无纺布物理支撑层、聚砜超滤膜中间层和聚酰胺活性层组成。由于聚酰胺复合膜的酰胺键极易受到原水中用于消毒的活性氯的攻击而造成不可逆的损坏,通常要求进水中自由氯浓度小于0.1 mg/L以延长膜元件的使用寿命。提高聚酰胺复合反渗透膜的耐氯性一直以来是膜材料研究的热点,改进方法主要包括表面涂覆、表面修复以及开发耐氯聚合物材料。材料技术的不断发展,对于反渗透膜微观结构的调控以及性能的提升起到了重要作用。
2)高压反渗透
随着膜技术工业的迅猛发展和应用领域的不断拓展,用户对膜产品的性能有了差异化的需求,如更低进水水质要求和更高的操作压力。在此背景下,开放式宽流道的碟管式反渗透(DTRO)和管网式反渗透(STRO)膜组件应运而生。由于开放式宽流道的设计,对进水浊度和有机物耐受性高,最早应用于垃圾渗滤液的处理。DTRO和STRO这2种新型的膜组件最高操作压力可达12 MPa,因此可达到提高浓缩极限的目的,浓水盐度可达120g/L。但是操作压力提高的同时,造成了投资成本和运行成本的大幅度增加。DTRO和STRO膜元件价格十分高昂,超高的操作压力和废水盐度也对管路、阀门和泵的材质提出了更高的要求。
02 正渗透技术
正渗透是一种自发过程。如图2所示,在渗透压差的驱动下,水从较高水化学势一侧透过选择透过性膜流向较低水化学势一侧。由于无需外压驱动,正渗透技术具有能耗低、膜污染低、浓缩极限高等特点。国内外学者已对正渗透技术应用于海水淡化、垃圾渗滤液处理、食品加工、工业废水处理、水肥一体化灌溉、紧急救援水袋等领域开展了大量研究,展示了技术优势和潜在价值。
正渗透膜材料正渗透过程对于膜材料有很高的要求,以缓解内浓差极化,提高水通量和截留率,同时保证膜的机械性能和化学稳定性。正渗透过程对膜的要求主要包括:①具有致密的皮层,保证高截留率;②尽量薄且孔隙率大的支撑层,以最大程度地减小内浓差极化;③具有较高机械强度,延长膜的使用寿命;④高亲水性,以降低膜污染,提高膜通量。
正渗透汲取液较为常用的汲取液是氯化钠和碳酸氢铵。高浓度、热敏性碳酸氢铵汲取液由氨水和二氧化碳以一定比例混合,渗透压高达25MPa,可将含盐废水的盐度浓缩至15%~20%,被产水稀释后的汲取液可利用低品质热源进行分离,分离后产生的气体通过汲取液再生单元循环使用。NaCl汲取液溶解度高、不易结垢、易于循环使用,低浓度下可以采用反渗透进行分离。然而,对于高含盐原水,NaCl汲取液的分离困难。
03 电渗析技术
电渗析过程如图3所示,盐溶液中的阴、阳离子在外加直流电的驱动下,分别向阳极和阴极定向移动。阴离子交换膜和阳离子交换膜交替布置在阴阳两级之间,与特制的隔板使电渗析器中形成了连续排列的浓室和淡室,其中淡室中的离子不断迁移到浓室中而使含盐水实现浓缩。电渗析与反渗透相比,脱盐率较低。电渗析过程中所能除去的仅是水中的电解质离子,而对于不带荷电的粒子如水中的硅、硼以及有机物粒子则不能去除。
近些年,双极膜电渗析技术的不断发展为工业废水零排放处理提供了新的解决思路。通过双极膜电渗析技术,可将零排放末端的高浓盐水制成稀酸和稀碱,提高了工业废水资源化利用率。如图4所示,双极膜的两侧分别带有固定阴离子集团和阳离子集团,可阻挡阴离子和阳离子的穿透。在直流电的作用下,双极膜能将水解离成H+和OH-。为提高双极膜的性能,国内外研究团队在制膜工艺和方法、基膜材料、膜改性等方面开展了大量工作。中国科技大学以电纺丝工艺制备的双极膜,具有特殊的形貌,性能较传统铸膜双极膜得到了大幅度提升。在双极膜中间层引入了氧化石墨烯纳米颗粒,大大降低了膜电阻和过电位。
膜集成工艺
01 高效反渗透工艺(HERO)
高效反渗透因运行稳定、成本低、占地空间小等优点,在国外已经有了非常广泛的应用,工艺流程如图5所示。该工艺主要包括完全软化(通过化学软化联合树脂软化深度降硬)及除固、二氧化碳去除和反渗透3个核心步骤。与传统的反渗透浓缩工艺相比,高效反渗透工艺主要具有如下几个特点。
(1)完全软化高效反渗透工艺采用化学软化与树脂软化对废水中的硬度进行深度去除,控制产水硬度(以CaCO3计)小于1×10-6。因此,后续由硬度产生的潜在结垢风险小,系统运行稳定,水回收率可达90%以上。
(2)高pH运行由于HERO预处理的产水硬度极低,因此可在相对较高的pH条件下运行(pH=9~10)。高pH运行条件可以有效地减少微生物污染、硅垢和有机物污染,使得系统运行更加稳定,膜使用寿命更长。但该技术所存在的问题是,为了满足超滤和反渗透的进水要求,HERO工艺在前端废水处理中需要投加大量的软化药剂进行除垢,清除废水中的钙、镁等杂质。这对于硬度非常高的废水(如电厂脱硫废水),完全软化的药剂费用非常高昂。另外,为了维持高pH,还需要消耗大量碱。
02 常温结晶-反渗透耦合工艺(ATC-RO)
常温结晶-反渗透技术是在传统反渗透系统的浓水回路中引入一个常温结晶过程,以过饱和驱动的自发结晶取代化学药剂引发的化学反应,大幅减少预处理药剂使用量,从而打破难溶盐溶解度对膜系统回收率的限制,在无需深度除硬预处理的条件下,ATC-RO工艺可实现较高的水回收率,并将部分硬度转化为2价盐副产品进行回收,流程见图6。
该技术的优势如下:
(1)预处理措施简捷与HERO技术相比,ATC-RO技术无需彻底脱除原水中的硬度,因此药剂消耗量少,同时通过常温结晶对过饱和度的有效控制,保证工艺的水回收率达到90%以上。
(2)设备投资低ATC-RO工艺省去了离子交换树脂、脱气塔等设备,降低了设备整体能耗。
(3)废水无机盐资源化与传统石灰-纯碱软化技术相比,常温结晶-反渗透技术中的钙离子通过结晶以高纯度硫酸钙的形式排出系统,在预处理软化过程中污泥量显著减少。副产高纯度的CaSO4盐,提高资源化水平。
03 电渗析-反渗透耦合工艺(ED-RO)
ED-RO耦合工艺结合了ED高浓缩极限和反渗透高脱盐率的特点,可对高含盐废水实现连续处理,在得到高品质回用脱盐水(TDS≤500 mg/L)的同时,将盐水的盐度浓缩至200g/L以上。ED-RO工艺流程如图7所示,原水与经RO单元处理后的浓水中的一部分作为ED单元淡室进水,部分脱盐后的淡水进入反渗透单元进行脱盐处理,得到产品水;另一部分作为ED单元浓水进水,最终得到系统浓水。在实际运行过程中,电渗析离子迁移过程中会夹带一定量的水进入ED浓室,可通过控制浓室循环水的外排量,最终实现对原水盐分的高倍率浓缩。
ED-RO高浓缩极限的特点可大幅度降低后续蒸发器的处理规模,进而降低零排放总体工艺的投资成本和运行成本。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
从煤化工含盐废水一级浓缩技术、浓盐水二级浓缩技术、高浓盐水固化处理技术和结晶盐的处理处置4个方面,综述了国内外关于煤化工含盐废水处理的膜材料、膜浓缩技术设备、蒸发结晶技术设备和杂盐分质结晶回收工艺的研究现状、发展趋势及工程应用情况。着重分析各处理技术的优缺点和应用中存在的问题,同
导读:石灰石-石膏湿法脱硫工艺运行稳定,对煤种适应性强,技术成熟,脱硫效率可达95%以上,是当前燃煤电厂应用最广泛的脱硫技术。石灰石-石膏湿法脱硫工艺中,来自燃煤、石灰石以及工业用水中的氯离子不断富集,高氯环境会加速金属材料的腐蚀,抑制石灰石溶解,导致石膏品质下降。为了保证脱硫系统的
摘要:介绍了反渗透膜浓缩零排放技术在某汽车厂无锡基地的含氮磷废水零排放项目中的应用情况。该系统将16m3/h经生化处理后的废水浓缩0.25m3/h,TDS的质量浓度约80g/L,然后进入减压干燥系统,最终生成含盐固体,反渗透产生的清洁产水作为涂装工艺用水。运行结果表明,反渗透膜浓缩系统运行良好,系统产
1煤化工废水零排放常见工艺随着环保政策的收紧,国家对已建和新建的煤化工项目要求废水零排放。虽然不同煤化工工艺产生的废水性质有所差异,但传统处理煤化工废水的工艺大多包括生物活性处理、化学沉淀、悬浮物过滤、膜浓缩产水回用和蒸发固化等。图1为煤化工废水零排放主要阶段示意。膜浓缩和蒸发结晶
近日,自然资源部海洋战略规划与经济司发布《2022年全国海水利用报告》。《报告》显示,截至2022年底,全国现有海水淡化工程150个,工程规模2357048吨/日,比2021年增加了500615吨/日。其中,万吨级及以上海水淡化工程50个,工程规模2145428吨/日;千吨级及以上、万吨级以下海水淡化工程52个,工程规模
LG化学水处理是LG化学的一个部门,基于突破性的薄膜纳米复合材料(TFN)技术,生产NanoH20海水和苦咸水反渗透(RO)膜元件。TFN技术通过膜表面嵌入良性纳米材料来提高膜的性能,并在不影响脱盐率的情况下增加产水量。
膜技术较传统污水处理技术在出水水质、占地面积、污泥产量等方面具有较强的优势,以反渗透膜为主的膜技术得到了许多国家的高度重视,在近几年得到了快速的发展和更广泛的应用。值此2023年第24届环博会之际,众多膜产品供应商携最新技术产品精彩亮相,全球海水淡化反渗透膜领域第一品牌LG化学也带着其具
沙特阿拉伯有远见的新城市Neom正在建设,据称100%使用可再生能源——绿氢的海水淡化厂。该项目将建在Neom水上工业园区OXAGON之上,OXAGON目标之一是确保所有居民和工业都使用价格合理的100%可再生能源——绿氢。这个新的海水淡化厂是正在开发的可持续基础设施和循环经济类型的一个案例,以实现零碳足迹
巴安水务在美国佛罗里达州的全资子公司SWT(SafBonWaterTechnology,Inc.)开年后传来了开门红的好消息,公司收到三个合同,共计12,082,228美元。这三个合同分别是蒙古国MAPA公司的苦咸水淡化项目(采用反渗透技术),美国著名工程公司Fluor在智利的海水淡化项目,以及PREPA在波多黎各首都圣圣胡安的过
12月1日,国家能源招标网发布了新疆化工污水膜系统智慧反渗透技术研究中试技术服务公开招标项目招标公告。
沙漠地区“水贵如油”,海水淡化是解决用水难题的主要途径。中国电建日前成功签约沙特阿拉伯朱拜勒三期B独立海水淡化项目EPC(工程总承包)合同,项目建成后将缓解沙特首都利雅得日益增长的用水需求。
近日,中国煤炭工业协会在北京组织专家对低碳院完成的“高盐反渗透低压极限膜浓缩技术”进行科技成果鉴定,鉴定委员会对该成果的技术水平给出了“国际领先”的鉴定结论,并建议进一步扩大工业化应用。
反渗透膜分离技术是在高于溶液渗透压作用下,利用半透膜拦截水中的盐类、胶体、微生物以及有机物等杂质,实现溶质与溶剂的有效分离。反渗透技术在电厂锅炉补给水处理中有广泛应用,是制备电厂生产所需除盐水的重要工序。补给水系统反渗透回收率通常为75%,排放约25%的浓水。反渗透浓水为经常性排水,水量不容忽视,如果浓水直接外排将造成水资源的浪费。
再生水作为火电厂生产用水,增加了反渗透膜结垢或被污染的风险,异常情况主要表现在给水压力、压差、产水流量和脱盐率的变化,应结合预处理方式和原水水质进行判断,确定结垢或污染物类型。碳酸钙垢和硫酸钙垢的清洗主要采用酸和EDTA盐,微生物和细菌污染采用非氧化性的杀菌剂,铁污染的清洗剂主要是NaHSO3溶液,无机胶体污染采用低浓度的NaOH溶液,在清洗过程中应严格控制清洗剂的温度和pH值。
随着国家对环保要求的提高和对城市中水回用的推行,越来越多的已建电厂将锅炉补给水的膜处理工艺列入技改项目。城市中水污染性高,在其回用过程中,多家发电企业的化学制水系统和循环水系统频繁出现问题。
8月26日,嘉戎技术披露2022年半年度报告,2022年上半年,公司实现营业收入3.62亿元,同比增长25.78%;归属于上市公司股东的净利润4402.35万元,同比下降28.52%;归属于上市公司股东的扣除非经常性损益的净利润3502.61万元,同比下降15.34%;基本每股收益0.45元。公司主营业务为膜分离装备、高性能低温
高盐废水是指总含盐量至少3.5wt%的废水。高盐废水来源广泛、成分复杂,通常含有大量Cl-、SO42-、Na+、Ca2+、Mg2+等可溶性无机盐离子,以及含量不等的重金属离子。其中,火电厂洗煤工艺中产生的脱硫废水就是一种典型的工业高盐废水。因此,高盐废水的处理难度极大,能耗极高,并且处理过程中通常还伴有
盐湖提锂火了!在水务企业2021业绩整体表现不尽人意之时,很多企业开始将目光瞄向新的领域,而盐湖提锂这个站在“最强风口”上的赛道成为了如碧水源、巴安水务、久吾高科等膜分离技术企业的新的选择。那么,龙头企业们纷纷布局的“盐湖提锂”究竟是什么?他们为什么选择了这个赛道?盐湖提锂站上新风口
4月21日,厦门嘉戎技术股份有限公司(股票简称:嘉戎技术)敲钟上市,成功登陆深交所创业板。嘉戎技术本次公开发行股票2,913万股,其中公开发行新股2,913万股,发行价格38.39元/股,新股募集资金11.18亿元,发行后总股本11,649.7080万股。嘉戎技术主要从事膜分离装备、高性能膜组件等产品的研发、生产
4月8日,深交所官网发布《厦门嘉戎技术股份有限公司首次公开发行股票并在创业板上市网上路演公告》。厦门嘉戎技术股份有限公司首次公开发行人民币普通股A股并在创业板上市的申请已经深圳证券交易所创业板上市委员会审议通过,并已经中国证券监督管理委员会同意注册(证监许可[2022]499号)。嘉戎技术是
日前,中国石化联合会就《膜分离耦合法含苯系物废气治理工程技术规范》团体标准进行公开征求意见,详情如下:各有关单位:根据《关于印发2019年第一批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质函[2019]133号),由中国石油和化学工业联合会提出,中国化工环保协会组织制定的《膜
电渗析(ED),作为膜分离中发展较早的分离技术,是在电场作用下,以电势差为驱动力,利用离子交换膜对料液进行分离和提纯的一种高效、环保的分离过程。
光催化分离膜将膜分离与光催化结合在同一处理单元中,可发挥膜分离作用,同时也可以利用光催化剂高效降解水中的有毒有害污染物,提高膜的抗污染性能和水处理效率。因此是水处理领域的研究热点,并显示出巨大的应用潜力。本文综述了基于二氧化钛(TiO2)、氧化锌(ZnO)、石墨相氮化碳(g-C3N4)和氧化钨(WO3)四种常用催化剂的光催化分离膜的研究概况,重点对光催化分离膜的制备方法和性能进行了总结,光催化分离膜具有良好的发展前景,制备高效、稳定的可见光响应光催化分离膜是未来的发展趋势。
本文综述了近年来基于二维纳米材料的水处理功能膜研究进展,重点介绍了共混法、自组装等制备方法,并总结了此类功能膜在抗污染、膜通量恢复、强化污染物去除、调控盐截留及污染物监测领域的应用。最后对基于二维纳米材料的水处理功能膜发展方向,如限域催化、调控盐分离、监测传感等新兴领域进行了分析和展望。
本文不仅深入探讨了对不同目标组分(如水、离子、分子等)进行选择性分离的潜在膜材料、过程和机理,还讨论了发展高选择性膜材料和过程的实际需求、知识缺口、以及面临的技术挑战。本文还基于当前和未来的供水模式指明了高选择性膜材料的研究重点和方向。
7月6日—7月8日,青岛国际水大会在青岛西海岸新区顺利召开,大会以水资源、水环境、水生态、水安全为四条产业线,涵盖工业与城市污水资源化利用、城市饮用水安全保障、城市水务及智慧水务、海水淡化利用、膜分离技术、水生态修复、垃圾渗滤液处理以及污泥处理等诸多领域。陕西鼎澈膜科技有限公司(以下简称“鼎澈膜”)携最新产品——国产化高性能海水淡化膜参加本次大会,鼎澈膜营销总监王帅就产品特性、公司发展等问题与北极星环保网进行了深入交流。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!