登录注册
请使用微信扫一扫
关注公众号完成登录
天然气开采在采气和集输过程中通常需要加入泡排剂、缓蚀剂、阻垢剂等化学助剂,使得天然气田采出水组成更加复杂多变,一般都溶入或混入了大量石油类、可溶性盐、悬浮物等组分,有机物主要是羧酸或醇、烃类衍生物等。同样,页岩气开采过程中也会加入大量含有杀菌剂、阻垢剂、润滑剂和表面活性剂等化学添加剂的压裂液,返排液中含有一定量的烃类化合物、重金属和水溶性盐类等。这两种水体的共同特征均为盐、氨氮和有机物含量较高,而氨氮属废水中不易处理的一类物质。
目前,废水中氨氮的处理方法主要有吹脱与汽提法、离子交换法、折点氯化法、生物处理法和化学沉淀法等,但各有利弊。吹脱法受温度影响较大,在温度较低的时间和地区,处理效果会大大降低;离子交换法目前在国内多采用树脂和沸石作交换剂,虽能去除部分氨氮,但原料价格高、吸附容量低,且再生液的氨氮仍需处理;折点氯化法处理效果较好,但运行成本高,适用于处理低浓度氨氮废水;电化学氧化法受电极材料的限制,能耗偏高;生化处理氨氮废水时间较长,占地面积大,去除率有限,要进一步处理,还需依靠其他方法深度处理。
对于石油石化行业,多数要求废水处理后应达到《炼化企业节水减排考核指标与回用水质控制指标》(Q/SH 0104—2007),或《污水综合排放标准》(GB 8978—1996)要求,其中氨氮高限为10 mg/L。
针对天然气气田采出水和页岩气压裂返排液(以下简称天然气和页岩气开采废水)成分复杂、氨氮含量高的特性,笔者及所在课题组对氨氮的去除方式进行了试验探究,形成了新型脱氨氮装置,且进行了中试试验,脱氨氮效果好,为后段脱盐奠定了良好的条件,并为下一步这两种水体处理的可行性研究及工程化应用提供了参考。
一、试验部分
1.试验用水
试验用水分别采自采气厂污水站、天然气气田水、页岩气压裂返排液3种水体,几种水体硬度较高,pH呈弱碱性,氨氮在100 mg/L以内,含盐量较高,水质情况见表1。
2 工艺流程
一般情况下,对于含盐量较低的中低浓度氨氮废水若采用生化处理方式,效果好且成本较低。但对于天然气和页岩气开采废水而言,其含盐量高,生化处理菌种选择难,无法达到良好的处理效果,因此需考虑其他处理方式。
氨属易挥发物质。基于氨与水分子相对挥发度的差异,通过氨-水的气液平衡计算,在脱氨塔内使氨氮以氨分子的形式从水中分离,在精馏段内氨气及水蒸气与来自塔顶回流的浓氨水逆流接触,氨浓度进一步提高,然后以氨水或液氨的形式在塔顶冷凝器与水蒸气一起冷凝为高浓度氨水,后期集中处理;塔底则得到低氨氮含量的处理出水,从而达到脱氨氮的目的。据此,课题组设计了一套脱氨氮中试装置,并在此装置上进行条件试验,试验流程如图1所示。
二、结果与讨论
1.探试试验
取川北某地气田水,升至一定温度后泵入脱氨氮装置,达到稳定后连续进料,加热一定时间后停止运行,分别收集顶部冷凝液和底部脱氨氮液,并送样分析检测,结果见表2。
试验中发现,顶部冷凝液有较强的刺鼻性气味,底部脱氨氮液无异味。
从表2及进出料平衡计算可以得出:
(1)通过预蒸发,氨氮几乎都进入顶部冷凝液中,底部脱氨氮液的氨氮仅余18 mg/L,表明此工艺分离氨氮可行。
(2)低浓度的底部脱氨氮液体积占比95%以上,顶部冷凝液仅占进料总量的5%左右,这样只需处理或回收顶部冷凝液,即可实现废水的减量化。
(3)若调整相关工艺参数,对装置和操作控制进一步优化,底部脱氨氮液的氨氮含量还将继续降低,顶部冷凝液量也将继续减少,下一步拟调整相关参数进行条件试验。
2 脱氨氮条件试验
因探试试验未进行预处理,根据氨的易挥发特性,若将废水调至碱性,氨氮去除效果会更好;同时,回流比对氨氮的去除影响也较大。因此,下一步选取预处理不同pH、不同回流比进行条件试验;确定控制条件后,分别进行了3种水体的氨氮去除试验,以了解去除效果。因污水处理站水样氨氮含量最高,故首先选取此水样进行条件试验。
(1)不同pH条件试验
取某采气厂污水处理站水样,加碱分别调节至不同pH,加入絮凝剂,絮凝澄清后取上清液作为试验原料,固定回流比为30:1,试验结果见表3。
从表3可以看出:原水调节pH至10以上,底部脱氨氮液中几乎不含氨氮,而未调pH(8.5)的原水底部脱氨氮液中还残留26 mg/L的氨氮,去除效果较差。这表明调高原水pH可提高氨氮气化率,形成顶部高浓度冷凝液,pH越高越有利于对氨氮的去除。但也要注意到,因原水中Ca2+含量亦较高,pH较高时若不去除Ca2+,后期易引起结垢。故预处理过程中需加入纯碱去除Ca2+,以保证后段工况条件,避免设备结垢。
pH调至10以上,氨氮去除率可达95%以上。
结合脱氨氮效果和药剂成本等综合因素,确定原水pH调节至10左右为宜。
(2)不同回流比条件试验
取采气厂污水处理站水样,加碱调节pH至10左右,固定其他控制参数,分别调节装置不同回流比进行条件试验,结果见表4。
回流比升高意味着顶部冷凝液的占比降低,水的收率提高,更有利于废水的减量化。同时由表4可以看出,回流比升高时,顶部冷凝液的氨氮浓度更高,表明增加回流比有利于提高顶部冷凝液中氨氮含量,利于提浓操作。因此选取适宜的回流比控制参数为30:1。
(3)不同水体条件试验
为验证此装置对于不同水体的适应性,确定pH和回流比后,进行了3种水体脱氨氮对比试验,结果见表5。
由表5可以得出:
(1)3种水体顶部冷凝液氨氮含量高,底部脱氨氮液氨氮含量极低,氨氮去除率均高达97%以上,脱氨氮效果理想,充分验证了前面条件试验结果。
(2)3种水体虽特性不同,污染物含量不同,但脱氨氮试验趋势一致,表明此脱氨氮设备能适用于多种水体,适用性广泛。
故对于天然气气田水和页岩气压裂返排液等多种高含盐废水的氨氮去除,可采用此脱氨氮方法及装置。
3.蒸发试验
废水经脱氨氮工序后,所得脱氨氮液中氨氮含量已极低,为了确保下一步蒸发冷凝水氨氮含量达标,取污水处理站脱氨氮液进行蒸发试验,并分别取蒸发冷凝液和母液分析检测,掌握蒸发冷凝水中氨氮含量情况,结果见表6。
由表6可以看出,脱氨氮液继续蒸发,氨氮已完全去除,蒸发母液中无氨氮,所得蒸发冷凝液达标。进一步验证了废水蒸发前段脱氨氮工艺的可行性,保证了蒸发冷凝水的回用或达标排放。
4.工程化应用
根据试验结果,此工艺及装置可应用于高含盐废水脱氨氮工程化。工程人员设计了日处理气田水360m3的脱氨氮装置,已于2017年初应用于中石化川东北某气田水处理工程,工艺流程见图2。
原水经预处理去除部分无机杂质后,澄清液进入脱氨系统。通过脱氨氮系统,可将95%以上的氨氮从原水中蒸出,形成高浓度氨水,进一步通过高级氧化处理可分解为N2和H2O等无害物质;底部脱氨氮液则进入蒸发器继续蒸发浓缩,得到合格产出水,同时得到氯化钠固形物产品。
该装置目前已运行2年多,脱氨氮效果良好。
三、结论
(1)设计的脱氨氮工艺及装置可以有效去除天然气和页岩气开采废水中的氨氮,实现废水减量化,氨氮去除率可达95%以上。
(2)脱氨氮工艺中原水pH越高,越有利于提高氨氮的去除率;回流比越高,越有利于提高顶部冷凝液中的浓度,降低氨氮残留。针对天然气和页岩气开采废水,适宜的控制条件为:预处理pH为10左右,回流比控制在30:1,顶部冷凝液出水量控制在5%以内。
(3)设计的脱氨氮工艺及装置可大幅降低底部脱氨氮液中氨氮含量,为后续蒸发提供了条件保障,保证了产品水的达标。
(4)设计的脱氨氮工艺及装置对水体选择性低,可用于多种水体,具有广泛的适用性,可推广应用于各种高含盐含氨氮的废水处理。
(5)对高浓度氨水的处理还可进一步研究,实现成本更优化。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
摘要:氨氮废水会造成水体富营养化,就现状来看污染范围比较广。为消除含氨氮废水对自然环境带来的危害,必须要加强对专业处理技术的研究,总结以往实践经验,对比分析适应性最强的处理技术,争取更好的应对处理不同浓度、不同环境的氨氮废水污染问题。本文基于含氨氮废水处理现状,对专业技术手段进行
氨氮废水成分复杂,可生化性较差,去除方法主要以折点氯化法和吹脱法等常规物化脱氮技术和生物脱氮为主,其中物化脱氮存在二次污染、处理成本较高等问题,而低碳氮比条件下,生物脱氮难以较好地实现对氮的去除。电化学氧化法因具有运行成本低、效率高、无二次污染、设备简单等特点,兼具氧化、气浮、絮
2月6日,新疆维吾尔自治区生态环境厅发布关于塔城国家电投2×66万千瓦煤电一体化项目环境影响报告书的批复,该项目位于塔城地区托里县铁厂沟镇托里工业园(金港区),总投资600000万元,详情如下:关于塔城国家电投2×66万千瓦煤电一体化项目环境影响报告书的批复托里国电投发电有限责任公司:你公司《
上海化学工业区位于上海市南翼杭州湾北岸,总规划面积29.4平方公里,园区以炼化一体化项目为龙头,发展以烯烃和芳烃为原料的中下游石油化工装置以及精细化工深加工系列。德国巴斯夫、德国拜耳、德国德固赛、美国亨斯迈、日本三菱瓦斯化学、日本三井等跨国公司以及苏伊士集团、荷兰孚宝、法国液化空气集
9月26日,生态环境部发布《锂离子电池及相关电池材料制造建设项目环境影响评价文件审批原则(征求意见稿)》。全文如下:锂离子电池及相关电池材料制造建设项目环境影响评价文件审批原则(征求意见稿)第一条本审批原则适用于锂离子电池及相关正极材料、负极材料制造建设项目的环境影响评价文件审批。
10月30日,倍杰特承接的内蒙古久泰新材料有限公司年产100万吨乙二醇项目浓盐水回收装置顺利打通全流程,成功产出高品质结晶盐,产品质量指标优于工业干盐一级标准、产品水一次冷凝液及二次冷凝液完全回用达到零排放。此次试车成功标志着整个水系统全流程打通,为主工艺稳定生产运行提供了有力保障。该
北极星环保网将于2022年7月在山东·淄博召开“‘碳’路园区逐绿而行—第三届工业园区环境污染第三方治理专题研讨会”,从工业园区“测”“管”“治”等维度开展,共同从绿色低碳循环生态化角度探讨工业园区环境污染第三方治理热点话题。详情如下:“碳”路园区逐绿而行第三届工业园区环境污染第三方治
高含盐废水是指含至少总溶解固体TDS(TotalDissolvedSolid)和有机物的质量分数大于等于3.5%的废水,包括高盐生活废水和高盐工业废水。主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂及石油和天然气的采集加工等。这些废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-、SO42-、Na+、Ca2+等离子。这些高盐、高有机物废水,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生极大危害。该类浓废水的共同特点是:不能简单地用生化处理,且物化处理过程较复杂,处理费用较高,是污水处理行业公认的高难度处
近日,中国煤炭工业协会在北京组织专家对低碳院完成的“高盐反渗透低压极限膜浓缩技术”进行科技成果鉴定,鉴定委员会对该成果的技术水平给出了“国际领先”的鉴定结论,并建议进一步扩大工业化应用。
为了对宁夏和宁化学项目膜法产生的高含盐水进行处理,实现液体零排放和资源化利用,合众思(北京)环境工程有限公司设计并提供了MVR装置,MVR装置产生的合格冷凝水(BOD5≤5mg/L,CODcr≤10mg/L,NH3-N≤10mg/L,溶解固含量≤200mg/L)送至回用水箱,可用于生产系统代替新鲜水,其浓缩液经结晶处理得到混盐,最终实现零液体排放。本文对该项目MVR装置的技术工艺进行介绍,阐述了工艺特点,可为应用MVR蒸发结晶工艺处理工业废水实现液体零排放提供借鉴。
6月23日,记者从高新区获悉,日前,中国化学环保研究院暨中化学科学技术研究有限公司合肥研发中心(以下简称“环保研究院”)揭牌仪式在高新区举行。这标志着又一“国字号”研究院落户合肥市。
精细化工行业是我国经济实现跨越发展、走向国际市场的重要产业之一。但精细化工行业高盐、高浓有机废水由于排放量大,污染物成分复杂,高盐、高毒、可生化性差,治理难度大、成本高,其处理已成为制约精细化工行业可持续发展的瓶颈问题。部分精细化工企业为降低治理成本恶意偷排,引发了多起严重的环境污染事件,在社会上造成了恶劣影响,已严重威胁到太湖、淮河、海河、黄河等重点流域的水环境安全与水资源安全利用。
工业废水零排放脱盐过程不可避免地会产生大量浓盐水。浓盐水的主要成分是无机盐、重金属,也含有预处理、氯化、脱氯和脱盐等过程所用的少量化学品,如阻垢剂、酸和其他反应产物。这种没有被完全处理好且含有毒素的水若未经严格控制就被排放到外界环境中,会造成严重的环境污染问题,因此浓盐水的处理已经是制约工业废水排放的关键技术。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!