登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
AGS 内部氧传质限制使 NOB 生长受到抑制,进而使得亚硝化容易实现,而且良好的微生物固定化效果和颗粒污泥反应器较短的沉淀时间可以有效富集 AOB、淘洗 NOB.因此,短程硝化颗粒污泥的出现为高效低耗处理废水提供了新的选择。
温度对所有环境中微生物代谢和群落结构有很大的影响,其改变会导致生物转化过程改变.因此,通过研究温度改变对细菌产生的影响,从而理解它对自然环境和改造生态系统的作用是有必要的.在我国冬季,大部分污水处理厂污水温度只有 10℃左右,这样低的环境温度可以抑制微生物的新陈代谢和活动.生物脱氮工艺的处理效果与温度呈极强的负相关,当温度达到 10℃甚至更低时,适应常温(25℃左右)的污泥活性就会被大幅度抑制,而且低温会给污水的生物处理带来很多的问题,例如丝状菌的大量生长、污泥沉降性变差等.
在 AGS 系统中,低温会导致 AGS 的破坏、生物量流失等一系列问题,因此在低温条件下,AGS 系统很难启动.尽管这样,郭安等采用厌氧、好氧交替运行的小试 SBR 反应器,在秋、冬季温度由 18℃逐渐降至 10℃并长期维持在较低温度的下,培养出了具有良好物化特性的颗粒污泥,对生活污水中污染物的去除具有良好效果.王硕等采用内循环序批气提式反应器(SBAR)40d 在低温条件下培养出AGS,其对生化需氧量(COD)、氨氮(NH4+-N)和磷(P)的去除率分别为 87.2%、81.8%和 58.9%.粒径对颗粒污泥系统的效果具有重要影响.李定昌等研究了不同粒径成熟 AGS 中胞外聚合物的分布及物理化学特性.然而,关于粒径对 AGS 脱氮性能的影响少有研究.因此,本研究拟考察短程硝化 AGS 系统在低温条件下的启动过程及其稳定运行的情况,并筛选 3种粒径的 AGS,研究粒径对其脱氮性能的影响.
1 材料与方法
1.1 实验装置
实验所用装置为序批式反应器,如图 1 所示,反应器由有机玻璃板制成,高 170cm,直径为 8cm,反应器总容积为 8.5L,有效容积 8L,设定排水比为 50%.采用曝气泵(50L/min,50Hz)在反应器底部进行曝气;反应器外部设有水浴装置,用控温槽(上海朗晟,中国)控制反应器内水温恒定在 15℃.
1.2 接种污泥与实验用水
接种污泥取自北京市高碑店污水处理厂曝气池活性污泥,黑褐色.接种污泥的质量浓度(MLSS)为4600mg/L 左右,污泥的沉降指数(SVI)为 68.33,
MLVSS/MLSS=0.72.
实验用水为人工配制,模拟城镇生活污水,NH4+-N(以 NH4Cl 配制)质量浓度为 60mg/L,COD(CH3COONa) 值 为 300mg/L 左 右 ,P(KH2PO4) 为4mg/L,Ca(无水 CaCl2)为 40mg/L,Mg(MgSO4⋅2H2O)为 20mg/L.根据反应器实际降解 NH4+-N 的量,投加NaHCO3,维持反应器 pH 在 7.8~8.2 之间.每 1L 配水中添加 0.5mL 微生物生理活动所必需的微量元素,其中微量元素成分为 FeCl3⋅6H2O 1500mg/L、H3BO3150mg/L、CuSO4⋅5H2O 50mg/L、KI 150mg/L、MnCl2⋅4H2O 110mg/L 、 CoCl2⋅6H2O 150mg/L 、Na2MoO4⋅2H2O 60mg/L、ZnSO4⋅7H2O 120mg/L.
1.3 实验方法
1.3.1 低温培养 AGS
反应器运行方式为序批式进水,每个周期 12h,分为进水(3min)、曝气(9.5h)、沉淀(1-5min)、排水(1min)和静置(剩余时间)5 个阶段.
AGS 启动培养阶段(阶段 1,1~60d)、稳定运行阶段(阶段 2,61~100d)和亚硝化破坏与恢复阶段(阶段3,101~140d),其中在 1~99d 控制 DO 在 6mg/L 左右,100~109d 提高 DO 至 8mg/L 左右,110~140d 降低DO 至 5mg/L 左右.
1.3.2 批次实验装置和程序批次试验
使用500mL 集气瓶,进行不同粒径 AGS 的脱氮特性测定.反应器运行第 138d,亚硝化效果稳定后进行批次实验, AGS 从反应器中取出,先用自来水冲洗 3 遍以去除表面的残留基质,再用孔径为 1.0,2.0,3.0mm 的不锈钢筛网过滤得到粒径为 R1(1.0~2.0mm)、R2(2.0~3.0mm)和R3(>3.0mm)的AGS. AGS外观形态如图2所示,刻度尺最小刻度为 1mm. 用分析天平分别称取相同质量的 3 种粒径湿污泥,将污泥和模拟配水(与反应器进水水质相同)一起放入有效容积为500mL 的集气瓶中,集气瓶中 MLSS 与反应器中相同. 保证其他实验条件相同,每隔 1h 取样测定NH4+-N、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)和COD浓度,以此来确定不同粒径AGS的亚硝化活性,每次取水样体积为 5mL.
1.4 分析项目与方法
NH4+-N、NO2--N 和 NO3--N 的测定分别采用纳氏试剂分光光度法、N-(1-萘基)-乙二胺分光光度法和麝香草酚分光光度法;DO、T 和 pH 值通过在线测定仪(WTW,德国)进行测定;MLSS和MLVSS均采用重量法;COD 采用 COD 快速测定仪(连华,中国)进行测定;采用 Olympus BX51/52 (OLYMPUS,日本)光学显微镜观察 AGS 的外形;AGS 表面微观形态采用 Hitachi S3400N (HITACHI,日本)扫描电子显微镜(Scanning electronic microscopy,SEM)表征;AGS 粒径测量采用湿筛分法:从反应器中取出污泥样品,使其通过不同孔径的标准筛,将截留在不同孔径筛网上的颗粒污泥进行收集;AGS 中 DO 通过微电极测定,实验所用的微电极设备主要由下列几部分组成:Unisense 公司生产的 Microsensor MultimeterVersion 2.01 四通道主机、Z 轴微米级马达推进器、OX-10 氧微电极.
2 结果与讨论
2.1 污泥特性的变化
在反应器开始启动阶段,接种2L活性污泥,接种后反应器内 MLSS 为 4630mg/L 左右,培养过程中污泥颜色逐步从黑褐色变为淡黄色,最后变为黄褐色,如图 2 所示.
反应器在低温条件下启动过程中出现了丝状菌大量繁殖的现象,这与 Kreuk 等和 Bao等的实验结果一致.本实验通过将沉降时间从5min降低到3min,逐渐将絮体污泥筛选出去.在整个运行阶段污泥物理性质的变化如表 1 所示.
第 10d 在反应器中可以看到灰褐色形状不规则的细小颗粒,此阶段略长于常温条件下 AGS 的培养过程.第 15d,SVI 从 68 升高到 104,反应器中的污泥沉降性能由于丝状菌的大量增殖变差,大量沉降性不好的污泥随排水排出反应器,MLSS 从 4630 降低到 1824mg/L.第 30d,SVI 从 104 降低到 84,MLSS 从1824 升高到 2139mg/L,颗粒平均粒径在 1.3mm 左右.
之后污泥的沉降性越来越好,污泥量逐渐升高,第60d,SVI 值达到 36,MLSS 为 4356mg/L,结构密实、表面光滑的颗粒污泥占据反应器的主体.形成的AGS 粒径逐渐变大,在第 60d 平均粒径为 3.2mm.由表 1 可知,培养过程中 MLVSS/MLSS 的值先增大后减小,这是因为接种污泥取自污水厂,污泥中还有大量 的 无 机 质和其他惰 杂质 , 使得接种污泥MLVSS/MLSS 的值较低,随着培养的过程,无机质等逐渐被筛选出去,并且微生物的增殖使得 MLVSS/MLSS 的值逐渐升高,45d 后,MLVSS/MLSS 的值降低,分析其原因可能是随着颗粒污泥粒径的增大,颗粒污泥内部无机物质的富集以及表面对无机质的吸附作用增强的共同作用.
第 10、30 和 60d 的 AGS 外形如图 2a、b、c所示,d 为 100d 时 AGS 扫描电镜图像,可以看到颗粒污泥主要由短杆菌和球菌构成,丝状菌很少,颗粒污泥结构紧密,具有孔隙结构.
2.2 AGS 脱氮性能
由图3可知,开始运行的几天,出水NH4+-N浓度很低,出水 NO3--N 的浓度超过 50mg/L,而 NO2--N浓度仅为1mg/L左右,进水NH4+-N几乎全部转化为NO3--N,接种污泥具有很高的硝化性能,而且反应器中 DO 很高,因此未出现 NO2--N 积累的现象.随后由于大量沉降性能不好的污泥随排水排出,反应器内生物量大幅度降低,导致反应器出水NH4+-N浓度逐渐升高.15~30d,随着反应器中 MLSS 的提高,出水NH4+-N 浓度逐渐降低,最终去除率接近 100%.第32d,随着颗粒污泥的形成,反应器中出现 NO2--N 积累,而且NAR 随着AGS的粒径增大逐渐升高,在57d时达到最高并持续稳定了 43d,此阶段 NAR 始终在90%以上,出水 NO3--N 浓度维持在 5mg/L 左右.第100d,保持其他条件不变,提高曝气量,使反应器中的DO 达到 8mg/L,短程硝化被破坏,9d 时间出水NO3--N 浓度急剧升高,NAR 由 91.93%降至 2.07%.随后,调节 DO 在 5mg/L 左右,16d 后 NAR 逐渐升高达到 90.07%,短程硝化得到恢复并稳定运行了 16d.
如上所述,与常温条件下相比,系统的短程硝化性能具有良好性能,但其 NH4+-N 去除效率会有所降低.
2.3 粒径对 AGS 性能的影响
2.3.1 去除有机物的性能
由图 4 可以看出,3 种粒径的 AGS 对 COD 的去除效率均可以达到 80%以上,整体差别不大,出水COD 可达到一级A标准,对COD的去除均有较好的效果.在周期的前 2h,可以看到粒径越大,COD 的去除速率越低. R1 中颗粒粒径较小,比表面积较大,因此前期对 COD 的吸附作用较强,同时 R2 和 R3 中因为基质传质的作用的存在而使得粒径较大的颗粒内部微生物消耗基质的速度变慢,所以对 COD 的去除 R1 要略快于 R2 和 R3[13].
2.3.2 短程硝化性能
由图 5 可见,随着粒径的增大,系统中产生的 NO3--N 越少,NO2--N 积累的效果越稳定,粒径>3.0mm 的小试中整个过程几乎没有 NO3--N的产生.但是随着粒径的增大,系统 NH4+-N 的去除率降低,R1 最终出水的 NAR 没有 R2 和 R3 高,是因为颗粒粒径较小,即使颗粒内有氧气的传质作用,但内部的DO 浓度还是比较高,NOB 的生长没有得到有效的抑制,生成了大量的 NO3--N,因此 NAR 比较低.而R2 和 R3 的 NAR 仅仅相差 10%左右,可以看出,当水中 DO 为 6~7mg/L 时,粒径为 2mm 的颗粒污泥已经可以提供实现短程硝化适宜的微环境.
由图 2 可知,在混合粒径的反应器中,亚硝化稳定运行阶段,基本没有 NO3--N 的产生,因此提出假设:在 DO 比较高条件下的 AGS 短程硝化的体系中,粒径不同的 AGS 具有不同的作用,粒径小的颗粒污泥主要起到全程硝化的作用,体系中NH4+-N的去除主要是小粒径的颗粒污泥起作用,而其产生的NO3--N 由大颗粒污泥的反硝化作用去除,同时大颗粒污泥在去除 NH4+-N 的同时产生 NO2--N,体系短程硝化的实现主要是达到一定粒径的颗粒污泥在起主要作用.随着粒径的增大,系统为达到完全的NH4+-N 去除和生成 NO2--N,以及后续的反硝化,体系中 DO 的浓度可以更高.这样来说,颗粒粒径的增大可以使系统的运行条件更加宽松,运行更加简单.
经过测定,粒径大于 3.0mm 的颗粒占整个反应器中颗粒总数的 25.33%,粒径为 2.0~3.0mm 的颗粒占 62.47%,粒径小于 2.0mm 的颗粒占 12.2%.可以看到粒径大于 2.0mm 的颗粒污泥占反应器中颗粒污泥总数的比例较大,因此反应器体现出较强的短程硝化性能.如果本反应器中粒径小于 2.0mm 的颗粒污泥占的比例较大,则反应器短程硝化的性能较弱.
本实验研究 AGS 的粒径尺寸最大为 4.0mm 左右,在本实验研究的粒径范围内(0~4.0mm),粒径的增大对 AGS 的短程硝化活性的作用表现为两个方面,包括促进作用和抑制作用.促进作用:小颗粒污泥具有更好的传质效率和更大的比表面积,可以展现更好的生物活性.因此颗粒中的微环境与外界环境差别不大,基质充足,不能有效抑制 NOB 的生长,随着颗粒的增大,受传质作用的影响,颗粒污泥内部可以提供低 DO 的环境,可以抑制 NOB 的生长,所以粒径的增大将对 AGS 的短程硝化活性产生促进作用.抑制作用:随着粒径的增大,颗粒内部反硝化等产生的气体会溢出颗粒污泥,这些气体的溢出会使AGS 内部布满了孔道,这有利于基质进入颗粒污泥内部,破坏颗粒污泥已经形成的微环境,在一定程度上缓解传质作用的影响,从而抑制短程硝化.
2.3.3 氧气的传质
在 R1、R2 和 R3 中随机选取一颗 AGS,通过显微镜测得它们的半径依次为 533µm,1146µm 和 1524µm.将 AGS 固定在测量槽中,利用微电极技术测量颗粒污泥内部氧气传质的浓度梯度.测量槽中加入人工配水,水质为 NH4+-N 和 NO2--N 浓度为 20mg/L,NO3--N 浓度为 10mg/L,未添加碳源.通过水浴控制槽中的水温在 15℃.在测量槽水中进行曝气,直到水中DO 为6mg/L 左右停止曝气.颗粒在测量槽中与水接触 1h 后认为反应稳定,微电极的尖端在水中从 AGS 的正上方直接插入 AGS 进行测量,认
为 AGS 为规则的球形,设定颗粒污泥上部与水的水平接触面所在位置为零点,实验结果见图 6.
可以看到氧气在 AGS 内部的浓度梯度明显,3个不同粒径的 AGS 中氧气的传质过程相似.R1 中取出的样品因为粒径较小,在颗粒的中心处 DO 的浓度还可以达到 1.32mg/L,而 R2 与 R3 中 DO 的浓度可以达到 0mg/L,为反硝化细菌提供了缺氧环境.有研究表明,AOB 和 NOB 的氧饱和系数分别为0.3,1.1mg/L,它们在有限氧的条件下会对氧气进行争夺.因此,大多数的研究为了达到短程硝化都通过控制低 DO 的条件,使 AOB 可以生长,抑制 NOB生长.R1 中小粒径的颗粒内部 DO 不足以抑制 NOB的生长,所以出水 NO3--N 的浓度较高.而 R2 和 R3中取出的颗粒污泥粒径较大,其内部较低的 DO 可以有效的抑制 NOB 的生长及活性,可以实现NO2--N 的积累.已经有研究指出,生物膜可以显著的影响氧气传质.Anthonisen 等[17]得出当外界 DO 浓度为 3.3 和 6.8mg/L 时,在生物膜 30µm 处 DO 降低为 0和 0.06mg/L.Rathnayake 等指出外界 DO 浓度为2mg/L 时,在生物膜 100µm 处 DO 降低为 0mg/L.对于好氧颗粒污泥来说,当外界 DO 浓度为 5.5mg/L 时DO 的传质深度在 100µm[19].与其不同,本实验中外界 DO 浓度为 6mg/L 时,DO 在 600~700µm 的深度才降为 0.通过对比,Kishida 等[19]的反应器设置有搅拌装置,而本实验中并未设置,这可能导致本实验中形成的颗粒污泥结构不够密实,如图 2d 也可以看出好氧颗粒污泥内部空洞较多,这将有利于氧气传质到更深的地方.其次,本实验在低温条件下进行,温度会影响硝化细菌的活性,低温会导致颗粒污泥外部硝化细菌活性降低,使得外层好氧区域扩大,从而使颗粒污泥内部氧的扩散深度增加.
运行第 100d 时,提高 DO 为 8mg/L 左右,AGS内部氧气传质的深度增加,颗粒中原来分布的 NOB得到更多的 DO 从而恢复活性,短程硝化被破坏.但是,依照所测得的结果(图 6)推测,即使外界 DO 为8mg/L,粒径在 2mm 以上的 AGS 中也存在着缺氧区域,依旧可以提供反硝化菌、AOB 和 NOB 的生存环境.Bian 等通过比值控制实现了短程硝化,说明短程硝化所需要的氧传质条件不仅仅与 DO 有关,而且还与氨氮的浓度有关,因此推断即使在 DO 为8mg/L 的条件下,通过提高氨氮的浓度,经过长时间的调控运行,该系统也可以实现短程硝化.
颗粒粒径的增大,相同体积的颗粒污泥比表面积变小,相对的颗粒单位表面积的氨氮负荷提高,这使得氧的传质深度变小,而 AOB 的氧亲和力要高于NOB,这将导致颗粒中好氧区变小,缺氧区变大.在好氧颗粒污泥系统中,不同的细菌之间在争夺着颗粒内部的空间和基质,AOB 和 NOB 争夺氧气,而 AOB具有更高的氧亲和力,而反硝化细菌受到氧气的抑制,需要严格的缺氧环境.这些微生物分布在颗粒中相互影响,并且直接影响着反应器的性能.AGS 系统实现亚硝化必须使得AOB的活性高于NOB.系统达到稳定后 AOB 将在氨氮和氧气都比较充足的颗粒污泥的外层.NOB 如果没有被淘洗干净将会在 AOB的下一层,这里会有一定的氧气足够 NOB 将NO2--N 氧化成 NO3--N.反硝化细菌则生长在颗粒污泥中的缺氧的部分,这里 NO2--N 和 NO3--N 以及COD 可以传质进来,但仍然靠近 AOB 所在的层.
单从氧气的传质角度来看,颗粒污泥的粒径越大越有利于短程硝化实现.但有研究表明,颗粒污泥粒径越大越不稳定[21].Toh 等[22]研究发现,当颗粒粒径>4mm 时,粒径增大反而会导致其沉降性能变差,在浮力及外部剪切力作用下,最终会导致颗粒污泥解体,从而影响污染物去除效果和固液分离性能.实际中在用好氧颗粒污泥实现短程硝化处理污水时,可以将颗粒污泥的粒径控制在合理的范围,避免粒径较大而带来的不稳定运行情况.李定昌等研究表明,在 AGS 培养的工程实践中,可将 AGS 粒径控制在 1.6~2.0mm 范围内,维持较高的 PN/PS 值,以利于颗粒污泥的形成和稳定维持.
3 结论
3.1 15℃下,在 SBR 反应器中培养好氧颗粒污泥,培养过程中会出现丝状菌大量增殖的现象,通过逐渐缩短沉淀时间,性能良好的好氧颗粒污泥可以形成.
3.2 低温条件下的 AGS 培养,随着 AGS 粒径增大,开始出现 NO2--N 积累. 培养成熟的 AGS 具良好的污染物去除性能,出水氨氮几乎为零,出水 NO3--N在 5mg/L 左右,稳定时 NAR 可以达到 90%以上.
3.3 AGS 随着粒径的增大,其对有机物的去除效果整体差别不大,但前期消耗 COD 的速率会降低. 粒径对短程硝化的影响体现在促进作用和抑制作用两个方面.AGS 内部氧气传质明显,当水中 DO 为6~7mg/L 时,粒径为 2mm 的颗粒污泥已经可以提供实现短程硝化适宜的微环境.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
我国污水处理已经走过了百年历史,当前,污水处理行业一方面需要应对持续增长的污水处理量和高品质出水要求,另一方面“双碳”目标也对污水处理提出了新要求。在此背景下,新一代革命型污水处理技术——好氧颗粒污泥技术成为行业热点。与传统活性污泥絮体相比,好氧颗粒污泥形状规则,结构紧凑致密,沉
摘要:Nereda工艺是一种成熟可靠的应用于污水生化处理的好氧颗粒污泥技术。凭借Nereda反应器的特殊内件及运行周期,Nereda工艺具有同时脱氮除磷的优异性能。以荷兰3座应用Nereda技术的市政污水厂(Epe,Utrecht和Garmerwolde污水厂)为工程案例,详细介绍了它们的概况以及实际的脱氮除磷运行表现。最后
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
2020年,欧盟的地平线(Horizon2020)多了一个名叫水矿(WaterMining)的项目。顾名思义,就是要从水中挖矿,在污水生物处理工艺的副产物中挖掘可商业化的产品。这个项目从2020年9月正式开始,吸引了12个国家、38个机构的参与,总预算高达1910万欧。该项目计划在4年的时间里,分别对海水、城市污水和工业废
活性污泥法是我国污水处理厂(WWTP)对污废水生物处理应用最广泛的工艺。但该工艺存在占地面积大的问题,应用范围受到限制。好氧颗粒污泥(AGS)是微生物在特定条件下相互聚合形成的结构紧凑、外形规则的微生物聚合体,与传统的活性污泥法相比更具优势,如占地面积小、沉降性能良好、生物量浓度高、耐
最近有不少读者私信小编,好奇为啥频繁撰写和好氧颗粒污泥有关的文章。小编只能说,因为这是时下的一个热点。好氧颗粒污泥自成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、反硝化异养菌甚至还有厌氧氨氧化菌(anammox)。它的分层结构使得颗粒污泥通过底物扩散传质作
今天,小编带大家参观龙游县城南每天2万立方米工业污水处理厂——国内首座好氧颗粒污泥(AGS)技术工业化污水处理厂。详细了解北控工业环保在工业污水厂处理单元与生活污水厂的统筹,对生化处理工艺的升级,节省占地,减少投资。项目背景随着各大城市的快速发展,污水处理量日益增加,且污水需要进行分
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
我国污水处理已经走过了百年历史,当前,污水处理行业一方面需要应对持续增长的污水处理量和高品质出水要求,另一方面“双碳”目标也对污水处理提出了新要求。在此背景下,新一代革命型污水处理技术——好氧颗粒污泥技术成为行业热点。与传统活性污泥絮体相比,好氧颗粒污泥形状规则,结构紧凑致密,沉
摘要:Nereda工艺是一种成熟可靠的应用于污水生化处理的好氧颗粒污泥技术。凭借Nereda反应器的特殊内件及运行周期,Nereda工艺具有同时脱氮除磷的优异性能。以荷兰3座应用Nereda技术的市政污水厂(Epe,Utrecht和Garmerwolde污水厂)为工程案例,详细介绍了它们的概况以及实际的脱氮除磷运行表现。最后
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
2020年,欧盟的地平线(Horizon2020)多了一个名叫水矿(WaterMining)的项目。顾名思义,就是要从水中挖矿,在污水生物处理工艺的副产物中挖掘可商业化的产品。这个项目从2020年9月正式开始,吸引了12个国家、38个机构的参与,总预算高达1910万欧。该项目计划在4年的时间里,分别对海水、城市污水和工业废
活性污泥法是我国污水处理厂(WWTP)对污废水生物处理应用最广泛的工艺。但该工艺存在占地面积大的问题,应用范围受到限制。好氧颗粒污泥(AGS)是微生物在特定条件下相互聚合形成的结构紧凑、外形规则的微生物聚合体,与传统的活性污泥法相比更具优势,如占地面积小、沉降性能良好、生物量浓度高、耐
最近有不少读者私信小编,好奇为啥频繁撰写和好氧颗粒污泥有关的文章。小编只能说,因为这是时下的一个热点。好氧颗粒污泥自成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、反硝化异养菌甚至还有厌氧氨氧化菌(anammox)。它的分层结构使得颗粒污泥通过底物扩散传质作
今天,小编带大家参观龙游县城南每天2万立方米工业污水处理厂——国内首座好氧颗粒污泥(AGS)技术工业化污水处理厂。详细了解北控工业环保在工业污水厂处理单元与生活污水厂的统筹,对生化处理工艺的升级,节省占地,减少投资。项目背景随着各大城市的快速发展,污水处理量日益增加,且污水需要进行分
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
活性污泥法是我国污水处理厂(WWTP)对污废水生物处理应用最广泛的工艺。但该工艺存在占地面积大的问题,应用范围受到限制。好氧颗粒污泥(AGS)是微生物在特定条件下相互聚合形成的结构紧凑、外形规则的微生物聚合体,与传统的活性污泥法相比更具优势,如占地面积小、沉降性能良好、生物量浓度高、耐
今天,小编带大家参观龙游县城南每天2万立方米工业污水处理厂——国内首座好氧颗粒污泥(AGS)技术工业化污水处理厂。详细了解北控工业环保在工业污水厂处理单元与生活污水厂的统筹,对生化处理工艺的升级,节省占地,减少投资。项目背景随着各大城市的快速发展,污水处理量日益增加,且污水需要进行分
石化工业是我国的基础工业,是国民经济的重要组成部分,支撑了多个行业的发展。然而,石化行业同时也是水污染“大户”,其产生的废水成分复杂、水量波动大、可生化性差,且由于苯系类和硫化物等有毒物质的存在,常规生物处理工艺很难实现石化废水的高效处理以及难降解污染物的高效削减。好氧颗粒污泥(
一、什么是好氧颗粒污泥?好氧颗粒污泥(AerobicGranularSludge),简称AGS,是通过微生物自凝聚作用形成的颗粒状活性污泥。与普通活性污泥相比,它具有不易发生污泥膨胀、抗冲击能力强、能承受高有机负荷,集不同性质的微生物(好氧、兼氧和厌氧微生物)于一体等特点,近年的研究成果表明AGS能用于处
好氧颗粒污泥技术(AGS)因其快速沉降和高固体浓度特性,可省去占地面积较大的二沉淀池与耗能显著的回流设施,不仅能同时去除或回收碳、氮、磷等污染物,亦可减少75%的占地面积。目前,AGS技术在全球范围内的工程应用已达到70多例。好氧颗粒污泥工程应用除技术原因限制外,基于SBR运行模式使其不太容易
们先白话一下低能耗技术之一的好氧颗粒污泥技术(AGS)。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!