登录注册
请使用微信扫一扫
关注公众号完成登录
电解槽有效容积为500 mL,阳极采用钛基钌铱电极,阴极采用不锈钢电极,电极间距为1.5 cm,有效电解面积为24 cm2。用NaHCO3和CaCl2按物质的量比为2:1的比例配制模拟硬水。实验过程中利用蠕动泵将储水槽中的模拟硬水通过下进上出的方式抽入电解槽中,电解完成后通过出水池进行收集。
02 分析方法
水质总硬度的测定采用GB/T 6909—2008《锅炉用水和冷却水分析方法硬度的测定》;Cl-的测定采用GB/T 15453—2008《工业循环冷却水和锅炉用水中氯离子的测定》;活性氯的测定采用HJ 586—2010《水质活性氯和总氯的测定N,N-二乙基-1,4苯二胺分光光度法》。电流效率、阴极结垢剥离率计算式分别见式(1)、式(2)。
2 结果与分析
01 电流密度对电解效果的影响
配制硬度为400 mg/L、Cl-质量浓度为283.6 mg/L的模拟硬水,水力停留时间(HRT)为10 min,在不同电流密度下进行电解,结果见图2。
由图2(a)可知,电流效率随着电流密度的增大逐渐降低。硬度去除质量浓度随着电流密度的增大先增加后降低,这是因为电流密度较低时,Ca2+在溶液中的迁移速率较慢,阴极附近产生的OH-浓度较低,导致在低电流密度下CaCO3的沉积量较少。电流密度增大会加快Ca2+向阴极的迁移速率,溶液中的氧化还原反应加剧使阴极附近碱性增强,产生了较多的CO32-,促进了Ca2+在阴极表面沉积,所以当电流密度由5 mA/cm2增加到10 mA/cm2,硬度去除质量浓度由110 mg/L增加到180 mg/L。当电流密度超过10 mA/cm2,阴极的析氢反应加剧,较多的H2会在电极表面形成一层H2薄膜,阻碍了Ca2+、CO32-在阴极表面的传质过程,生成的大量H2也会导致阴极附近水体剧烈扰动,影响了Ca2+的迁移速率,导致了硬度去除质量浓度的下降。
由图2(b)可知,随着电流密度的增大,阳极的氧化反应加剧,Cl-去除质量浓度和活性氯浓度也逐渐增大。当电流密度由20 mA/cm2增加到25 mA/cm2,Cl-的去除速率显著加快,但活性氯的生成速率有所降低。这主要是由于在高电流密度下,电解产生的Cl2大部分以气体形式逸出,溶解于溶液中的Cl2的量减少,活性氯的生成速率降低。电流密度过高也会使阳极附近酸性增强,容易造成电极腐蚀。因此本研究采用的最适电流密度为10 mA/cm2。
02 水质硬度对电解效果的影响
在电流密度为10 mA/cm2、HRT为10 min的条件下,考察不同硬度的模拟硬水(Cl-质量浓度分别为141.8、283.6、425.4、567.2、709 mg/L)对Cl-、硬度去除质量浓度和活性氯质量浓度的影响,结果见表1。
由表1可知,Cl-、硬度去除质量浓度和活性氯质量浓度均随着水质硬度的增加而增大。由于本研究是NaHCO3和CaCl2按物质的量比为2:1配制的模拟硬水,硬度的增加会导致溶液中Cl-的初始浓度增加,抑制了阳极析氧副反应的发生,提高了析氯效率,因此活性氯浓度、Cl-去除质量浓度随着硬度的增加而增大。
不同硬度的模拟硬水对硬度去除率、电流效率、单位硬度去除能耗的影响见图3。
由图3可知,电流效率随着水质硬度的增加而增大,硬度去除率则呈先增大后降低的趋势。水质硬度的提高使溶液中的Ca2+和HCO3-浓度升高,离子的迁移速率加快,硬度去除质量浓度不断增加。本研究是在相同电流密度和电解时间下进行的,理论CaCO3的沉积量相同,因此电流效率随着硬度去除质量浓度的增加而上升。当水质硬度超过400 mg/L时,由于硬度去除质量浓度的增加幅度远低于初始硬度的增加量,因此硬度去除率不断降低。离子浓度的升高也使得电解槽的槽压下降,因此去除单位硬度的能耗随着水质硬度的增加显著降低。尽管水质硬度为400 mg/L时硬度去除率最高,达到了45%,优于水质硬度为800 mg/L时的硬度去除率41.25%,但电流效率较低,且去除单位硬度的能耗较高,达到了10.73 kW·h/kg,在工业应用中会造成资源浪费,因此实验选取最优水质硬度为800 mg/L。
03 HRT对电解效果的影响
配制硬度为800 mg/L、Cl-质量浓度为567.2 mg/L的模拟硬水,电流密度为10 mA/cm2,考察HRT对电解效果的影响,结果见图4。
由图4(a)可知,硬度去除质量浓度随着HRT的延长逐渐增大且反应速率呈先增加后降低的趋势。电流效率则随着HRT的延长不断降低。HRT过短导致到达阴极反应活性区域的Ca2+浓度较低,电解产生的CO32-较少,因此硬度去除质量浓度较小。随着HRT的延长,阴极附近的CO32-浓度显著增加,能与富集的Ca2+反应生成CaCO3沉淀附着在阴极表面。
Yu Yang等指出,阴极表面覆盖的CaCO3层带有负电位,能通过静电力吸引更多的Ca2+在阴极富集,因而大大地减小了冷却水的硬度。所以当HRT由5 min增加到10 min,硬度去除质量浓度由180 mg/L增加到了300 mg/L。当HRT超过10 min时,随着反应的进行,溶液中的离子浓度不断降低,电导率下降,离子迁移速率变缓,阴极表面被CaCO3沉积物大量覆盖,沉积物之间的离子通道收缩,OH-、Ca2+和HCO3-的对流扩散速率下降,传质速率受阻,因此反应速率下降。
由图4(b)可知,HRT的延长可以促进更多的Cl-迁移到阳极附近,通过氧化反应产生了较多的Cl2,从而增加了溶液的活性氯浓度和Cl-去除质量浓度。在本研究中将选取10 min作为最佳电解时间。
04 电流密度对倒极除垢的影响
在电解反应进行一段时间后,阴极表面会沉积大量的CaCO3,若不及时清理会影响后续的电解效果。本研究采用倒极法来去除阴极结垢,通过改变两极的极性,将原来的不锈钢阴极作为阳极,使电极表面的酸碱性发生改变,OH-在不锈钢电极附近发生氧化反应生成氧气,电极附近酸性增强,电极表面结垢条件被破坏,析出的氧气使附着的垢层不断剥落而被去除。将硬度为800 mg/L的模拟硬水在电流密度为10 mA/cm2的条件下电解1 h,获得具有一定质量垢层的阴极,经干燥冷却称重后重新放入新配制的模拟硬水中,在不同电流密度下进行倒极剥离,除垢时间为5 min,结果见图5。
由图5可知,当电流密度由3 mA/cm2增加到5 mA/cm2,除垢率也由57.49%增加到84.56%,且不会造成水质硬度的增加。说明此时主要以物理脱落为主,电流密度的增大使不锈钢电极表面产生的微气泡快速增加,并在电极和垢层间快速长大,直至将结垢物垫起隔离。而电解产生的H+不足以将附着在电极表面的CaCO3层溶解。在实验过程中也发现不锈钢电极表面的结垢呈块状剥落。当电流密度增加到8 mA/cm2,水样的硬度下降到700 mg/L,说明在钛钌铱电极附近生成了一定的CaCO3沉淀。当电流密度继续增大时,尽管钛钌铱阴极附近会生成一定量的CaCO3沉淀,但由于不锈钢电极附近的酸性较强,不锈钢电极表面的垢层会有一部分被H+溶解,以Ca2+的形式重新释放到溶液中,造成总硬度会随着电流密度的增加而上升,这在工业应用中会造成水质条件的二次恶化,因此最佳的电流密度为5 mA/cm2。
05 除垢时间对倒极除垢的影响
在倒极电流密度为5 mA/cm2的条件下,考察除垢时间对结垢剥离的效果,结果见图6。
由图6可知,当除垢时间由3 min逐渐增加到8 min,除垢率也由75.28%增加到了94.3%,且不会引起水质硬度的上升,在实验过程中均未发现不锈钢电极的腐蚀。当除垢时间继续增加,除垢率有所下降,同时水质硬度由800 mg/L下降到了760 mg/L,这可能是由于除垢时间的增加导致了钛钌铱电极附近的OH-浓度增加,生成了部分CaCO3沉淀。在实验过程中发现当除垢时间达到了10~15 min时,不锈钢电极会发生一定程度的腐蚀,造成电解电压的急剧升高,能耗增加,因此最佳除垢时间为8 min。
3 结论
(1)电化学法处理循环冷却水的最佳电解条件:水质硬度为800 mg/L,Cl-质量浓度为567.2 mg/L,电流密度为10 mA/cm2,HRT为10 min。在最佳电解条件下硬度去除质量浓度为300 mg/L,Cl-去除质量浓度为140 mg/L,活性氯质量浓度为8.74 mg/L,电流效率为88.44%。
(2)倒极除垢的最佳条件:倒极电流密度为5 mA/cm2,倒极除垢时间为8 min。在最佳倒极条件下阴极结垢剥离率为94.3%,且以物理脱落为主,不会造成水质的二次恶化或电极腐蚀。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
12月17日,特斯拉公司副总裁陶琳在微博发文透露,目前,上海超级工厂的冷却水循环利用率已经达到98%,每年回收的中水超过40万吨,经处理后排放的废水中绝对不含有一类重金属。陶琳还表示,如何不断减少制造环节的直接用水,一直是特斯拉优先研究的课题之一。除了利用再生水,我们还不断优化或者消除高
针对臭氧技术在电厂循环冷却水系统的工程应用,对其阻垢、缓蚀效果进行了研究。通过气水高效传质、DO3控制等关键工艺设计,成功在电厂循环水系统应用,项目运行结果表明:采用臭氧技术改造后,实际运行数据显示,660MW超超临界机组的夏季运行真空和端差数据稳定,且趋势稳中趋优:真空处于-(89~95)kPa范围内,95%以上的端差处于0.5~3.5℃范围内;运行53天后进行凝汽器性能试验,结果显示凝汽器端差改善28.27%、凝汽器压力改善8.21%、低压凝汽器清洁系数提高29.51%、高压凝汽器清洁系数提高29.92%,阻垢效果良好,有助于全厂节能降耗;臭氧技术处
7月28日,国家能源招标网发布了科环集团国能朗新明公司广东清远电厂2×1000MW机组新建工程水岛EPC总承包施工图、竣工图及相关服务招标公告项目招标公告。
循环冷却水系统中,由于进水水质等原因,往往导致水垢和腐蚀的产生,同时会有大量的细菌滋生,从而形成污垢。本文将介绍循环冷却水中水垢、污垢常用的控制方法。一、水垢的控制方法天然水中溶解有各种盐类,如重碳酸盐、硫酸盐、氯化物、硅酸盐等。其中以溶解的重碳酸盐如碳酸氢钙、碳酸氢镁为最多,也
摘要:采用一体化污水处理装置,将新型干法水泥厂生活、食堂用水通过除渣、曝气、杀菌、加药、过滤等处理后与经过去除渣质的部分循环冷却水在清水池中混合,氨氮、pH值、颗粒物等指标达标的水,通过清水泵抽至绿化带作为绿化水使用。实现冷却水循环使用,生活水处理回用,减少水资源的浪费。保护环境,
一般的说法腐蚀的定义是材料(通常是金属)和它所存在的环境之间的化学或电化学反应而引起材料的破坏及其性质的恶化变质叫腐蚀。根据反应机理可分为化学腐蚀和电化学腐蚀,根据形式可分为均匀腐蚀和局部腐蚀。所谓腐蚀,即金属和它所存在的环境之间的化学或电化学反应而引起金属的破坏现象。阳极反应是
前言:在电厂敞开式循环冷却水系统中,冷却水不断循环和蒸发,水中盐类及有机物质浓缩,如果采取的措施不当,系统易出现积垢、腐蚀及微生物滋生等问题,影响设备正常运行及安全生产。长久以来,电厂广泛采用化学药剂阻垢法,发挥了积极的作用,但同时存在化学药剂排放对环境污染、运行费用高、不易管理
一、循环冷却水中微生物的来源循环冷却水中的微生物来自两个方面:一是冷却塔在水的蒸发过程中需要引入大量的空气,微生物也随空气带入冷却水中;二是冷却水系统的补充水或多或少都会有微生物,这些微生物也随补充水进入冷却水系统中。二、为什么循环水的微生物危害比直流水严重的多?循环水的温度、pH
以折流电化学反应器为核心,构建除垢中试系统,研究不同参数对水垢去除过程的影响。结果表明,中试条件下垢样为层叠状的方解石型碳酸钙。阳极酸性区对碱度有去除作用,使得碱度去除率高于硬度去除率,降低水体结垢倾向。阴极电流密度过大造成水垢沉积效率降低;优化阴极电流密度为1.5mA/cm2。阴极面积
某火电厂循环水系统有多种补水水源,其中之一为铝冶炼厂蒸汽凝结水。由于在生产过程中发生液碱漏入凝结水系统,受污染的凝结水又回用补入循环水系统,导致该火电厂循环水受到污染。通过采取科学合理的应对处理措施,循环水水质恢复正常,未造成设备腐蚀、结垢等不良后果。工业企业是用水大户且绝大部分
着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。而在工业污水中,COD的降低是一个重要问题,那么工业污水COD降低不了该怎么办呢?一起来看看吧。工业污水特点:(1)排放量大,
摘要:简介了化学法中电化学法和药剂法的优缺点及适用条件;比较了电化学法中二维电极、三维电极及微生物电解的区别;阐述了电化学法去除废水中氨氮的作用机制;介绍了电化学法及药剂法处理氨氮废水的主要影响因素;着重介绍了不同化学法对氨氮去除效果的最新研究进展;最后,展望了电化学法和药剂法的未来研
随着地球人口的增加,社会对农业用地的需求正日渐增高,而土壤污染正酝酿着一场严重的环境危机。一般情况下,土壤中的重金属以阳离子形式存在,通过静电作用或与配位作用形成化学键保留在土壤中。因此,最终的修复目标不仅是从土壤基质中分离出重金属离子,而且还得将其还原为零价金属态。然而,目前常
镀铜层常作为镀镍、镀锡、镀铬、镀银、镀金的底层,以提高基体金属与表面镀层的结合力和镀层的防腐蚀性能,因此,含铜电镀废水在电镀行业中十分普遍,而且该种工业废水通常含有多种重金属和络合剂。目前,对于含铜电镀废水的处理主要采用化学法、离子交换法、膜分离法、吸附法、生物法等。化学法处理含
近日,在北京举行的一个循环经济研讨会上,一台其貌不扬的智能机器引起了参会人员的极大兴趣,机器的全称是新型餐厨垃圾脱盐除盐回收净化处理器绰号吃干榨净机器人。这个看上去像一个汽车大小的长方形盒子,构造并不简单:一个不锈钢电解槽容器底部,带有一个螺旋桨刀片,容器上有孔。工作人员把果皮、
石墨烯,一种新型二维碳材料,起步于好奇心驱动的基础研究(2010年诺贝尔物理学奖),有望促进材料、能源和电子信息的协同发展。石墨烯,集合优异的柔韧性、导热、导电、光学、光电和化学稳定性于一身,具有潜在的广泛应用前景。但是单层本征石墨烯的制备并不容易,规模化的制备目前只能接近本征石墨烯的
印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水之一。特别是近年来化学纤维织物的发展,仿真丝的兴起和印染后整理技术的进步,难生化降解的有机物大量进入印染废水,其CODCr也由原先的数百mg/L上升到2000~3000mg/L,使原有的生物处理系统CODCr去除率从
一、背景介绍:某南方水泥有限公司现有2500t/D新型干法预分解回转窑生产线1条、配套4.5MW余热发电机组、冷却水系统保有量大约1000立方米。补水水源为厂区旁河水(浊度较高),以前采用化学药剂处理方式,循环水浓缩倍数2.5倍左右、春秋季循环水用水量每月大约35000立方米左右。每年清洗两次、清洗后凝
针对臭氧技术在电厂循环冷却水系统的工程应用,对其阻垢、缓蚀效果进行了研究。通过气水高效传质、DO3控制等关键工艺设计,成功在电厂循环水系统应用,项目运行结果表明:采用臭氧技术改造后,实际运行数据显示,660MW超超临界机组的夏季运行真空和端差数据稳定,且趋势稳中趋优:真空处于-(89~95)kPa范围内,95%以上的端差处于0.5~3.5℃范围内;运行53天后进行凝汽器性能试验,结果显示凝汽器端差改善28.27%、凝汽器压力改善8.21%、低压凝汽器清洁系数提高29.51%、高压凝汽器清洁系数提高29.92%,阻垢效果良好,有助于全厂节能降耗;臭氧技术处
循环冷却水系统中,由于进水水质等原因,往往导致水垢和腐蚀的产生,同时会有大量的细菌滋生,从而形成污垢。本文将介绍循环冷却水中水垢、污垢常用的控制方法。一、水垢的控制方法天然水中溶解有各种盐类,如重碳酸盐、硫酸盐、氯化物、硅酸盐等。其中以溶解的重碳酸盐如碳酸氢钙、碳酸氢镁为最多,也
一般的说法腐蚀的定义是材料(通常是金属)和它所存在的环境之间的化学或电化学反应而引起材料的破坏及其性质的恶化变质叫腐蚀。根据反应机理可分为化学腐蚀和电化学腐蚀,根据形式可分为均匀腐蚀和局部腐蚀。所谓腐蚀,即金属和它所存在的环境之间的化学或电化学反应而引起金属的破坏现象。阳极反应是
一、循环冷却水中微生物的来源循环冷却水中的微生物来自两个方面:一是冷却塔在水的蒸发过程中需要引入大量的空气,微生物也随空气带入冷却水中;二是冷却水系统的补充水或多或少都会有微生物,这些微生物也随补充水进入冷却水系统中。二、为什么循环水的微生物危害比直流水严重的多?循环水的温度、pH
以折流电化学反应器为核心,构建除垢中试系统,研究不同参数对水垢去除过程的影响。结果表明,中试条件下垢样为层叠状的方解石型碳酸钙。阳极酸性区对碱度有去除作用,使得碱度去除率高于硬度去除率,降低水体结垢倾向。阴极电流密度过大造成水垢沉积效率降低;优化阴极电流密度为1.5mA/cm2。阴极面积
某火电厂循环水系统有多种补水水源,其中之一为铝冶炼厂蒸汽凝结水。由于在生产过程中发生液碱漏入凝结水系统,受污染的凝结水又回用补入循环水系统,导致该火电厂循环水受到污染。通过采取科学合理的应对处理措施,循环水水质恢复正常,未造成设备腐蚀、结垢等不良后果。工业企业是用水大户且绝大部分
研制了一种新型环保无磷水处理配方,进行静态阻垢试验、旋转挂片腐蚀试验和动态模拟试验。煤化工装置循环水场现场应用证明,该无磷配方的处理效果完全能够达到GB/T50050-2017《工业循环冷却水处理设计规范》的技术要求,排污水可达到GB8978-1996《污水综合排放标准》中的一级排放标准要求。随着国家对
水轮机冷却塔是利用循环水系统的富裕能量带动水轮机作功,在确保冷却塔正常运作的同时,由水轮机替换原有风叶电机、减速器、传动轴等部件,把系统中浪费的多余动能转化为机械能,带动风叶转动,以实现节能的目的。下面南京水轮机生产厂家南京仟亿达分析水轮机冷却塔节能原理。工业冷却水在热交换设备和
工业循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩,其中所含的盐类超标,阴阳离子增加、pH值明显变化,致使水质恶化,而循环水的温度,pH值和营养成分有利于微生物的繁殖,冷却塔上充足的日光照射更是藻类生长的理想地方。而结垢控制及腐蚀控制、微生物的控制等等,必然
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!