登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
1. UASB反应器的反应原理
UASB反应器可分为两个区域,反应区和气、液、固三相分离区。在反应区下部是由沉淀性能良好的污泥(颗粒污泥或絮状污泥),形成厌氧污泥床。当废水由反应器底部进入反应器后,由于水的向上流动和产生的大量气体上升形成了良好的自然搅拌作用,并使一部分污泥在反应区的污泥床上方,形成相对稀薄的污泥悬浮层。悬浮液进入分离区后,气体首先进入集气室被分离,含有悬浮液的废水进入分离区的沉降室,由于气体已被分离,在沉降室扰动很小,污泥在此沉降,由斜面返回反应区。
2. UASB反应器运行的三个重要前提
▶反应器内形成沉淀性能良好的颗粒污泥或絮状污泥;
▶由于产气和进水的均匀分布所形成的良好的自然搅拌作用;
▶合理的三相分离器使沉淀性能良好污泥能保留在反应区内。
3. UASB反应器启动运行的四个阶段
3.1 第一阶段
UASB启动运行初始阶段:
▶选用接种污泥:选用污水厂污泥消化池的消化污泥接种(具有一定的产甲烷活性)。
▶接种污泥的方法(接种污泥量、接种污泥的浓度):
方法:将含固80%的接种污泥加水搅拌后,均匀倒入到UASB反应池。
接种污泥量:接种污泥量为UASB反应器的有效容积的30%到50%,最少15%,一般为30%。接种污泥的填充量不超过UASB反应器的有效容积的60%。
▶接种污泥的浓度:初启动时,稀型污泥的接种量为20到30kgvSS/m3,浓度小于40kgVSS/m3的稠型硝化污泥接种量可以略小些。
亦有建议以6-8 kgVSS/m3为宜,因为消化污泥一般为絮状体,不宜接种太多,太多对颗粒污泥不但没有好处,反而不利。
种泥即污泥种的意思,种泥太多是没有必要的,颗粒污泥并非是种泥本身形成的,而是以种泥为种子,在提供充足的营养基质下由新繁殖的微生物形成,种泥多了,反而会与初生的颗粒污泥争夺养分,不利于颗粒污泥的形成。
▶接种污泥时的水质:配制低浓度的废水有利于颗粒污泥的形成,但浓度也应当足够维持良好的细菌生长条件,因此,初始配水最低 CODcr浓度为2000mg/L,然后逐步提高有机负荷直到可降解的 CODcr去除率达到80%为止。当进水 CODcr浓度高时,可采用稀释水进水,调节到适宜的CODcr浓度值。
3.2 第二阶段(初始运行阶段,佔计30天左右)
初始阶段是指反应器负荷低于2kgCODcr/m³·d的运行阶段,此阶段反应器的负荷由0.1kgCODcr/m³·d开始,逐步分多次提升到2kgCODcr/m³·d。
开始采用间歇进水,污泥负荷宜控制在0.05-0.2kgCODcr/(kgVSS·d),当接种污泥逐渐适应废水后,污泥逐渐具有除去有机物的能力,当CODcr去除率达到80%,或出水有机酸浓度低于200-300mg/L,可以提升进水负荷大约为0.5 kgCODcr/m3·d,此时进水由间歇进水改为连续进水。
提升CODcr浓度标准为:当可生物降解的CODcr去除率达到80%后方可提高,直到2kgCOD/m3·d为初始阶段。
在这段运行过程中,会有少量的非常细小的分散污泥带出,其主要原因是水的上流速度和逐渐产生的少量沼气所致。
初始运行阶段,每日测定进出水流量、pH、CODcr、ALK、VFA、SS等项目,经测定结果判断,若出水VFA<3mmol/L, VFA/ALK=0.3以下,表示UASB系统运行正常。
3.3 第三阶段(颗粒污泥出现期,预计25天)
结束初期启动后,污泥已适应废水性质并具有一定除去有机物的能力,这时应及时提升污泥负荷为0.25kgCODcr/ kgVSS·d或进水容积负荷2.0kgCODcr/m³·d,使微生物获得足够的营养。
反应器的有机负荷由2kgCOD/m³·d到3.0kgCOD/m³·d的运行阶段,此阶段的反应负荷由2kgCOD/m³·d开始,每次0.1kgCOD/m³·d有机负荷提升,也可以每次负荷增加20%,每次操作所需时间长短不同,有时可长达两周,有时仅几天,经过多次重复操作可达到设计指标。
提升有机负荷的标准与监测项目判断运行正常的方法同初始运行阶段。
在这段运行中,由于提升水量大,COD浓度高,产气量和上流速度的增加引起污泥膨胀,污泥量带岀量多,大多为细小非分散的污泥或部分絮状污泥。这种污泥的带出,有利于颗粒化污泥的形成。
3.4 第四阶段(颗粒污泥培养期,30天左右)
本阶段的任务是要实现反应器内的污泥全部颗粒化或使反应器达到设计负荷,为了加速污泥的增殖,应尽快把污泥负荷提高至0.4-0.5kgCODcr/ kgVSS·d,使微生物获得充足养料,促进其快速增长。
这一阶段是指反应器的有机负荷达到设计指标3.0kgCOD/m³·d,以后的稳定运行阶段。在这段的运行中,pH值、温度、有机负荷、VFA、ALK等各项操作参数严格控制,逐步形成颗粒污泥。
注意:
(1)自初始阶段开始,每日监测项目一次进、出水PH值、COD、SS、VFA ALK、流量;
(2)根据监测结果进行分析、判断、及时调整进水量、浓度、保持稳定运行。
4. UASB反应器调试运行控制工艺参数
4.1 反应温度(常温):20±2℃,指反应器内反应液的温度,高出细菌的生长温度的上限,将导致细菌死亡。当温度下降并低于温度范围的下限时,从整体上讲,细菌不会死亡,而只是逐渐停止或减弱代谢活动,菌种处于休眠状态。
4.2 pH值:pH值范围为6.8-7.8,最佳pH值范围为6.8-7.2。pH值范围是指UASB反应器内反应区的pH,而不是进液的pH。因为废水进入反应器内,生物化学过程和稀释作用可以迅速改变进液的pH值。对pH值改变最大的影响因素是酸的形成,特別是乙酸的形成。因此含有大量溶解性碳水化合物(如糖、淀粉)的废水进入反应器后pH将迅速降低。而乙酸化的废水进入反应器后pH将上升,对于含大量蛋白质或氨基酸的废水,由于氨的形成,pH会略有上升。对不同的废水可选择不同的进液pH值。
4.3 出水VFA的浓度与组成:因为ⅥFA的去除程度可以直接反映出反应器运行的状况,在正常情况下,底物由酸化菌转化为ⅥA,ⅥFA可被甲烷菌转化甲烷,因此甲烷菌活跃时,出水VFA浓度较低,当出水VFA浓度低于3mo1/1(或200ng乙酸/L)时,反应器运行状态最为良好
4.4 营养物与微量元素:主要营养物氮、磷、钾和硫等以及其他的生长必须的微量元素。例如(Fe、Ni、Co)应当满足微生物生长的需要。一般N和P的要求大约为COD:N:P=(350-500):5:1,但由于发酵产酸菌的生长速率大大高于甲烷菌,因此较为精确的估算应当是COD:N:P:S=(50/Y):5:1,其中Y为细胞产率,对于发酵产酸菌Y=0.15;对于产甲烷菌Y=0.03,此外,甲烷菌细胞组成中有较高浓度的铁、镍和钴。
4.5 毒物:毒性化合物应当低于抑制浓度或应给于污泥足够的驯化时间。如:氨氮、无机硫化物、盐类、重金属、非极性有机化合物(挥发性脂肪酸)等,在运行中都要根据监测结果进行判断,及时调整处理。
5. UASB初次启动过程的注意事项
5.1 对初期启动UASB目标要明确
对UASB(第一阶段)启动初期,不要追求反应器的处理效率和出水质量。初期的目标是使反应器逐渐进入“工作”状态。是使菌种由休眠状态恢复、活化的过程。在这一过程中,当菌种从休眠状态中恢复到营养细胞的状态后,它们还要经历对废水性质的适应。在整个驯化增殖过程中,而原种污泥中可能浓度较低甲烷菌増长速度相对于产酸菌要慢得多。因此在颗粒污泥岀现前的这一段相当长。这一段不可能快,也不能有较大的负荷。
5.2 进水COD的影响
当废水CODcr浓度低于2000mg/L时,一般不需要稀释,可直接进液,当废水CODcr浓度高于2000mg/L时,可采用进水稀释,增大进水量,促使处理设施水流分布均匀。
5.3 负荷增加的操作方法
启动最初负荷可从0.1-2.0kgCOD/m3·d开始,当降解的CODcr去除率达到80%后,再逐步増大负荷。负荷不应增加太快,只要略高于容积负荷0.1 kgCOD/m3·d即可。水力保留时间大于24小时。连续运行,直到有气体产生。5天后检査产气是否达到略高于0.1m3/m3·d。如果5天后反应器产气量仍未达到这一数值,可以停止进水,3天后再恢复进液,直到产气量增加达到0.1m3/m3·d。
检查出水VFA,VFA过高,则表示反应器负荷相当于当时的菌种活力偏高。出水VFA若高于8mmol/L,则停止进水,直到反应器内VFA低于3mmol/L后,再继续以原浓度、原负荷进水,如果出水VFA低于3mmol/L,说明反应器运行良好。
5.4 增加负荷量
增加负荷量可以通过增大进水量,或者降低进水稀释比的方法,负荷每次可提升20-30%,可以重复进行。每次操作所需时间长短不同,有时长达两周,有时仅需几天,要根据监测数据判断,直到达到设计负荷为止。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分离器进行分离,污泥回落到污泥悬浮区,分离后废水排出系统,同时回收产生的沼气。注:常规的UASB没有外循环泵(在水力负荷特别低,造成上升流
一、厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济而有效的处理技术。废水厌氧生物处理技术(厌氧消化),就是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等。厌氧与好氧过
升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。由荷兰Lettinga教授于1977年发明。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化
UASB反应器的二次启动是相对于初次启动说的。所谓初次启动是指用颗粒污泥以外的其它污泥作为种泥启动一个UASB反应器的过程。而二次启动是指使用颗粒污泥作为种泥对UASB反应器的启动。1、UASB二次启动要点颗粒污泥是UASB启动的理想的种泥,使用颗粒污泥的二次启动大大缩短了启动时间,即使对于性质不同
厌氧反应器内颗粒污泥形成的过程称之为颗粒污泥化,颗粒污泥化是大多数UASB反应器启动的目标和启动成功的标志。污泥的颗粒化可以使UASB反应器允许有更高的有机物容积负荷和水力负荷。初次启动是对一个新建的UASB系统以未驯化的非颗粒污泥接种,使反应器达到设计负荷和有机物去除效率的过程,通过这一过
升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分离器进行分离,污泥回落到污泥悬浮区,分离后废水排出系统,同时回收产生的沼气。注:常规的UASB没有外循环泵(在水力负荷特别低,造成上升流
1、什么类型的废水才适合用UASB技术?它对进水水质有哪些要求?或者说进水的水质对用该技术产生什么影响?答:大家都不知道“什么类型的废水适合用UASB技术”,这样问就犯大错了!拿水来试,如果长期(6个月以上)稳定(正负5%)地保持BOD5去除率在90%左右,并且,器内污泥量增加,和有足够量的沼气产
关于IC、UASB厌氧反应器的调试有哪些经验值得借鉴?一、厌氧反应器启动准备工作包含内容概述1、必须保证施工出来的厌氧反应器是严格按照设计图纸的要求按质按量完工,不存在漏项、缺项、不到位的地方等,这在接种污泥之前要必须经过反复检查确认。当然,前提是设计者设计的厌氧反应器必须是成熟的。2、
1、IC反应器的内部图解厌氧内循环反应器简称IC反应器,是基于UASB反应器颗粒化和三相分离器的概念而改进的新型反应器,可看成是由两个UASB反应器的单元相互重叠而成。它的特点是在一个高的反应器内将沼气的分离分成两个阶段。底部一个处于极端的高负荷,上部一个处于低负荷。其基本构造如图所示。1-进
UASB、EGSB和IC是在高负荷有机废水处理中最常见的三种厌氧反应器。这三种反应器结构不同,处理能力各异,今天我们将这三种厌氧反应器进行详细比较,分别说一说他们的优缺点。1、厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
我国污水处理已经走过了百年历史,当前,污水处理行业一方面需要应对持续增长的污水处理量和高品质出水要求,另一方面“双碳”目标也对污水处理提出了新要求。在此背景下,新一代革命型污水处理技术——好氧颗粒污泥技术成为行业热点。与传统活性污泥絮体相比,好氧颗粒污泥形状规则,结构紧凑致密,沉
摘要:Nereda工艺是一种成熟可靠的应用于污水生化处理的好氧颗粒污泥技术。凭借Nereda反应器的特殊内件及运行周期,Nereda工艺具有同时脱氮除磷的优异性能。以荷兰3座应用Nereda技术的市政污水厂(Epe,Utrecht和Garmerwolde污水厂)为工程案例,详细介绍了它们的概况以及实际的脱氮除磷运行表现。最后
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
2020年,欧盟的地平线(Horizon2020)多了一个名叫水矿(WaterMining)的项目。顾名思义,就是要从水中挖矿,在污水生物处理工艺的副产物中挖掘可商业化的产品。这个项目从2020年9月正式开始,吸引了12个国家、38个机构的参与,总预算高达1910万欧。该项目计划在4年的时间里,分别对海水、城市污水和工业废
活性污泥法是我国污水处理厂(WWTP)对污废水生物处理应用最广泛的工艺。但该工艺存在占地面积大的问题,应用范围受到限制。好氧颗粒污泥(AGS)是微生物在特定条件下相互聚合形成的结构紧凑、外形规则的微生物聚合体,与传统的活性污泥法相比更具优势,如占地面积小、沉降性能良好、生物量浓度高、耐
最近有不少读者私信小编,好奇为啥频繁撰写和好氧颗粒污泥有关的文章。小编只能说,因为这是时下的一个热点。好氧颗粒污泥自成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、反硝化异养菌甚至还有厌氧氨氧化菌(anammox)。它的分层结构使得颗粒污泥通过底物扩散传质作
今天,小编带大家参观龙游县城南每天2万立方米工业污水处理厂——国内首座好氧颗粒污泥(AGS)技术工业化污水处理厂。详细了解北控工业环保在工业污水厂处理单元与生活污水厂的统筹,对生化处理工艺的升级,节省占地,减少投资。项目背景随着各大城市的快速发展,污水处理量日益增加,且污水需要进行分
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!