登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 试验装置
本连续型电化学氧化系统由电化学氧化反应器、预处理系统、酸洗系统组成,试验装置见图 1。
由图 1 可知, 待处理的废水首先在调节水箱使用药剂调节水质至试验要求, 依次通过氯化铵调节氨氮浓度、氯化钠调节氯离子浓度和电导率、氢氧化钠调节 pH,加药后的试验用水在调节水箱内自循环并通过曝气使药剂混合均匀, 经由预处理系统滤除粒径超过 200 μm 的悬浮物后, 再经由输送泵恒流送入电化学氧化反应器进行氨氮的去除反应, 反应器出水先于出水储罐临时储存, 调节水质合格后外排。电化学氧化反应产物氢气和氮气随出水一起进入出水储罐,再由出水储罐顶部的风机排至大气中,防止了易燃易爆气体的集聚。
1.3 仪器与分析方法
电化学氧化反应器采用板式双极性电极, 阳极为钛基及贵金属氧化物涂层 DSA、阴极为大面积纯钛。整个电化学氧化反应器采用三级串联模式,共包含 10 块极板,极板总有效面积为 243.2 cm2,其首、末极板与直流电源正、负极相连。电化学氧化反应器有效容积为 0.3 m³, 进水管道和出水管道预留取样口,以方便取样分析进出水水质。溶液氨氮浓度由水杨酸分光光度法测定, 使用DR6000 型紫外可见分光光度计(美国哈希)。pH 由inoLab pH7310 型 pH 计 (德国 WTW) 测定 , 氯离子浓度由 SevenCompact 型离子计(瑞士梅特勒)测定,电导率由 DDSJ-318 型电导率仪(上海雷磁)测定。
1.4 试验方法
采用连续进出水的模式进行电化学氧化试验。根据试验需求分别控制进水水质、 停留时长和反应器电流密度为恒定数值, 在电化学氧化反应器进口或出口进行取样,测定水样中的氨氮浓度、氯离子浓度、电导率等,根据测定结果分析变量对电化学氧化过程的影响。
试验过程中始终控制反应器出口处水温小于 40 ℃、反应器电流密度小于 535 mA/c㎡、废水停留时间小于 30 min(要求进水流量大于 0.6 m3/h)。
2 结果与讨论
2.1 电流密度的影响
氨氮的电化学氧化过程可分为直接电化学氧化和间接电化学氧化。直接电化学氧化过程是指氨氮被吸附在阳极表面, 通过与阳极之间发生直接电子传递而被氧化。间接电化学氧化是指氨氮被阳极产生的强氧化物质如活性氯 (Cl2、HClO、OCl-)、H2O2、O3、·OH 等间接氧化。氨氮的氧化产物主要为N2,此外还有少量 NO3-和 NO2-。
保持停留时间恒定为 15 min(流量为 1.2 t/h),对模拟废水进行电化学氧化试验, 取样并测量电化学氧化反应器进口和出口溶液的氨氮浓度, 控制电流密度在 0~535 mA/cm³ 范围内,考察电流密度对氨氮去除效率的影响,结果见图 2。
由图 2 可知,电极间的电流密度极大地影响氨氮的去除效果,氨氮去除效果与电流密度呈近似线性的关系。电流密度越大,反应器进出口的氨氮浓度之差越大,即系统对氨氮的去除效果越好;电流密度越小,反应器氨氮去除质量浓度也越小, 即系统对氨氮的去除效果越差。在最高电流密度为 535 mA/cm2 条件下,单次最多能够使氨氮质量浓度下降 256.7 mg/L。
2.2 停留时间的影响
保持电流密度为 535 mA/cm³,通过调整反应器进水流量实现对反应停留时间的控制, 对模拟废水进行电化学氧化试验, 分别测量电化学氧化反应器进口和出口溶液的氨氮浓度, 考察停留时间对氨氮去除效率的影响,结果见图 3。
由图 3 可知,相同电流密度、不同停留时间条件下, 系统对氨氮的去除效果随着停留时间的增加近似线性增大。但在实际应用中,过长的停留时间意味着过低的进水流速, 在大规模废水处理中会影响整体处理效率。因此,应当在兼顾氨氮去除能力和整体处理效率的前提下,控制合适的停留时间。
2.3 初始氨氮浓度的影响
保持停留时间为 15 min(流量为 1.2 t/h),控制不同的电流密度,对不同初始氨氮质量浓度(86、115、154、183 mg/L) 的模拟废水进行电化学氧化试验, 检测分析电化学氧化反应器出口溶液的氨氮浓度,考察初始氨氮质量浓度对氨氮去除效率的影响,结果见图 4。
由图 4 可知, 在反应停留时间和其他水质条件都一致的前提下, 装置出口氨氮质量浓度随电流密度变化的各条曲线基本平行, 说明初始氨氮质量浓度不会影响氨氮的去除效率, 电化学氧化去除氨氮的反应为表观零级反应。
2.4 氯离子质量浓度和电导率的影响
保持停留时间为 15 min(流量为 1.2 t/h),调整电流密度对不同氯离子质量浓度(1760、2 780、7 970mg/L)的模拟废水进行电化学氧化试验,分别测量电化学氧化反应器进口和出口溶液的氨氮浓度,考察氯离子质量浓度对氨氮去除效率的影响,结果见图 5。
由图 5 可知,在电流密度、停留时间和其他水质相同的条件下,试验用水的氯离子浓度越高,系统对氨氮的去除效果越好。该结果说明间接氧化在电化学氧化去除氨氮的过程中起到了重要作用:大量的氯离子先在反应器阳极生成活性氯(Cl2、HOCl、ClO-等),然后再与氨氮进一步反应, 从而达到去除氨氮的目的。但是在实际工业应用中,氯离子浓度并非越高越合适,过高的氯离子一方面增大了水体的负担,另一方面也使逸出进入空气的活性氯增多造成二次污染。
氯离子浓度的增加还能够一定程度上增大溶液的导电性。进水电导率会影响电化学氧化反应器的最大可调电流密度, 影响实际应用中氨氮去除的效率。因此,控制进水的电导率在较高水平,对连续型电化学氧化系统处理电厂含氨废水有较大的意义。
2.5 初始 p H 的影响
保持停留时间为 15 min(流量为 1.2 t/h),电流密度为 250 mA/cm2,对相同氨氮质量浓度(502 mg/L)、不同 p H 的模拟废水进行连续电化学氧化处理,分别测量电化学氧化反应器进口和出口溶液的氨氮浓度,考察初始 pH 对氨氮去除效率的影响,结果见表 2。
由表 2 可知, 在初始 pH 为 4.9~9.0 的范围内,初始 pH 对连续型电化学氧化系统的氨氮去除影响不明显,表明该系统能够适应中性范围内不同初始pH 含氨废水的处理。根据文献报道,过碱环境下溶液中的副反应增多,过酸环境下氯气容易溢出,两者都不利于溶液中的氨氮电化学氧化成氮气 ,因此应当尽量保持待处理溶液初始 pH 在中性范围内。
2.6 连续型电化学氧化系统处理电厂实际含氨废水
在模拟废水电化学氧化试验所获得的优化工艺运行参数基础上, 研究人员利用该系统连续处理了某电厂含氨废水。
该电厂的精处理再生废水具有氨氮浓度 高 、氯离子浓度较低、电导率较低的特点(表 1)。保持停留时间为 12 min(流量为 1.5 t/h)、电流密度为 210mA/cm2(最大可调电流密度),对精处理再生废水进行了连续电化学氧化试验。电化学氧化反应前后反应器出口溶液的氨氮浓度见图 6。
由图 6 可知,电化学反应开始后,反应器出口溶液氨氮质量浓度迅速由 137 mg/L 下降至 51 mg/L,并在之后 25 min 内保持稳定。该结果说明,连续型电化学氧化系统能够处理某电厂精处理再生废水,氨氮去除效果稳定。但该废水较低的电导率(6 801 μS/cm)限制了电化学氧化反应器的最大可调电流密度(210mA/cm2),较低的氯离子质量浓度(2 150 mg/L)也影响了系统的氨氮去除效率。经处理后的废水氨氮质量浓度(51 mg/L)仍然超过了国家污水综合排放标准(GB 8978—1996)中规定的一级排放标准(15 mg/L)。
将该电厂的精处理再生废水与脱硫废水以体积比 3∶1 形成的混合废水, 不仅大幅提高了进水溶液中的氯离子质量浓度(5060 mg/L)和电导率(16430μS/cm)从而保证了氨氮的去除效率,也将钙镁离子控制在较低质量浓度(37 mg/L),从而降低了结垢风险。保持停留时间为 12 min(流量为 1.5 t/h)、电流密度为 352.7 mA/cm2(最大可调电流密度),对混合废水进行了连续电化学氧化反应试验,结果见图 7。
由图 7 可知, 电化学反应开始后反应器出口溶液氨氮质量浓度迅速由 103.5 mg/L 下降至 0.3 mg/L。
并在之后保持稳定。该结果说明,连续型电化学氧化系统对某电厂精处理再生废水-脱硫废水组成的混合废水有较好的处理效果, 单次流过电化学氧化反应器即能够完全去除其中溶解的氨氮。此外,混合废水中的 COD(主要由脱硫废水引入)也由 37 mg/L 下降至 0, 证明该电化学氧化系统的高级氧化过程对溶液中有机物也有一定的降解作用。
对本试验中所采用的连续型电化学氧化系统能耗进行评估:每去除实际废水中 1 kg 的氨氮,系统平均电耗为 62.2 k W·h。其中电化学氧化反应器电耗为 45.3 kW·h,恒流输送泵电耗为 16.9 kW·h。以0.4 元/(k W·h)的电价估算,该系统氨氮的去除成本约为 24.9 元/kg。
该电厂目前采用药剂法(折点氯化法)处理含氨废水,通过投加高浓度的次氯酸钠药剂(外购)将氨氮氧化反应成为氮气,其运行成本主要是次氯酸钠药剂费。每去除实际废水中 1 kg 的氨氮需要投加110 kg 6.4%的次氯酸钠药剂(市场价格约 814 元/t),共需药剂费 89.5 元。电化学氧化法与药剂法综合比较见表 3。
由表3 可知, 综合比较连续型电化学氧化处理与药剂法处理含氨废水, 电化学氧化法不仅能够去除废水中的氨氮还能同步去除 COD, 无二次污染,无明显安全风险,具有显著的综合优势。虽然该电化学氧化系统前期设备投资较高, 但其运行成本不到药剂法的1/3,整体经济性仍然占优。
3 结论
(1)本试验设计的连续型电化学氧化系统能够以连续进出水的形式处理燃煤电厂的末端含氨废水, 控制废水的氨氮质量浓度达到国家污水综合排放标准(GB 8978—1996)中规定的一级排放标准(15mg/L)。
(2)在理论研究中,增大电流密度、延长停留时间、 增加氯离子浓度有利于电化学氧化系统氨氮去除效率的提升, 初始氨氮浓度变化和 pH 在 5~9 范围内变化几乎不会影响氨氮去除效率。
(3)在实际工业应用中,受限于反应器的最大安全电流和进水溶液的电导率,电流密度不能无限增大;过高的停留时间不利于工业应用中含氨废水处理的整体效率;氯离子浓度受到实际工业废水水质的限制, 如采用额外加药的方式提升废水氯离子浓度将增大水体负担。
(4)根据燃煤电厂末端含氨废水不同的水质特点, 将不同废水混合后经连续型电化学氧化系统处理,取得较好的处理效果。保持停留时间为 12 min(流量为 1.5 t/h)、电流密度为 352.7 mA/cm2,对于氨氮质量浓度为 103.5 mg/L 的实际燃煤电厂末端含氨废水,能够保证系统出水氨氮质量浓度小于 1 mg/L。该系统连续运行 3 个月来氨氮去除效果稳定,运行过程中无需额外加药且能耗较低,是一种绿色环保的含氨废水处理方法。该中试连续型试验系统和试验结果为更大规模的工业化应用提供了理论基础和实践经验。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,11月2日,首航能源集团总投资23.95亿元30万千瓦新型储能项目在昌吉国家高新技术产业开发区开工奠基。项目占地150亩,总投资23.95亿,将建成规模达30万千瓦的独立新型储能电站,其中电化学储能部分预计于2025年11月份投产,低温热泵熔盐储热部分预计于2025年10月份投产,压缩二氧化碳
北极星储能网获悉,近日,中集集团在路演活动上表示,公司在电化学储能及二氧化碳储能、氢储能等方面都进行了布局。电化学储能方面,中集集团与行业龙头企业合作,为风电、光伏电站提供稳定、安全、高能效的集装箱式储能装备,完成了多个具有代表性的大型储能项目。2022年中集集团成立卫星板块“储能科
水处理过程中未被完全去除的抗生素以及其他化学物质(比如其他药物和重金属等)会促进抗性基因再污水处理设施中的水平转移,使微生物可以从周围环境中(比如污水处理设施中的不同处理单元)摄取游离的抗性基因从而获得抗生素抗性。
据外媒报道,科学家们正在用新的方法创造性地生产燃料和电力,但它们也会带来自己的问题。例如,用藻类制造生物燃料就显示出了希望,但它确实会产生大量的有毒废水。现在,澳大利亚的研究人员已经找到了一种净化这些废水的方法,并采用了一种简单且可扩展的电气工艺。这项研究始于另一个项目的分支,悉
CurapipeSystemLtdCurapipe拥有专利的无孔自动泄漏修复(TALR)是一种内部管道泄漏修复解决方案,用于解决供水网络中的多次泄漏。TALR特别适用于从多个泄漏点大量泄漏的管道,无需提前定位泄漏未知,修复过程无需开挖,也不影响管道的正常运行。目前寻求3-5M的C轮融资。ecoSPEARSecoSPEARS推出了业界首
摘要:本文从电化学氧化法的基本原理出发,结合相应的实验,对电化学氧化法在含氰电镀废水处理中的应用情况进行了分析和讨论。关键词:含氰电镀废水;电化学氧化法;处理策略1电化学氧化法概述电化学氧化法的基本原理,是在电解槽内设置有机物溶液或者悬浮液,接通直流电后,可以在阳极上夺取电子,将
摘要:本文采用电化学氧化法去除低浓度氨氮污水,利用正交实验的方法探究了Ph、电流密度、氯离子添加量、电化学氧化时间、板极类型对氨氮去除效果的影响。结果表明,最优水平组合为pH=7,电解时间为90min,氯离子浓度为2000mg/L,电流密度为20mA/cm2,电极板组合为铱钽钛板-316不锈钢。关键词:电化学
近日,合肥工业大学材料科学与工程学院教授闫建与中国科学院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组毛文平合作,研究Al3+掺杂二氧化锰的电化学循环稳定性,相关成果发表在ACSAppl.Mater.Interfaces杂志上。超级电容器具有比容量高、循环寿命长、环境友好等特点,在电子产品和混合动力系统
在过去的十年中,锂离子电池的电能已经被用来为电动汽车和混合动力汽车提供动力。锂离子电池也被用作笔记本电脑和手机等便携式电子设备的主要储能系统。然而,由于其低功率密度,锂离子电池取得了有限的成功,特别是在电动车辆和混合动力电动车辆的商业应用中。因此,今天在汽车应用中使用的锂离子电池
一、引言钴金属氧化物作为一类典型的储能材料,既可以用于锂离子电池负极材料,又可以用于超级电容器电极材料,因而备受关注。在作为锂离子电池负极材料时,具有较高的理论比容量,但充放电体积变化较大、材料导电性较差;在作为超级电容器电极材料时,虽然理论比电容较高,但电阻偏大、成本较高,因而
北极星电力网获悉,3月11日,新集能源发布投资者关系活动记录表,披露电力装机容量及在建3座燃煤电厂投产时间。电力装机容量公司控股板集电厂(一期2×100万千瓦、二期2×66万千瓦)、上饶电厂(2×100万千瓦)、滁州电厂(2×66万千瓦)、六安电厂(2×66万千瓦),全资新集一电厂、新集二电厂两个低
2月25日,中国能建建筑集团承建的华能陇东能源基地百万吨级二氧化碳捕集利用与封存研究及示范项目DCS机柜受电完成。该项目位于甘肃省庆阳市华能陇东能源基地,依托基地正宁2×1000兆瓦调峰煤电工程建设,采用燃烧后化学吸收二氧化碳捕集工艺路线,年捕集二氧化碳150万吨,捕集率大于90%,二氧化碳纯度
据美国能源信息署的评估,美国将在2025年退役12.3吉瓦(GW)的发电能力,与2024年相比,退役量增加了65%。2024年美国电网退役了7.5吉瓦的发电能力,这是自2011年以来退役发电能力最少的一年。计划退役的发电能力中,煤炭发电能力占最大比例(66%),其次是天然气(21%)。(来源:国际能源小数据作者:
2月8日,浙江省生态环境厅印发《燃煤电厂大气污染物排放标准(征求意见稿)》。详情如下:浙江省生态环境厅关于公开征求地方标准《燃煤电厂大气污染物排放标准(征求意见稿)》意见的通知为完善燃煤电厂大气污染物的排放管控要求,助力深入打好蓝天保卫战,以高水平保护支撑高质量发展,我厅组织对我省
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2024年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2024年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗295.93g/kWh,同比降低0.01g/kWh,平
2024年12月30日,全国首个基于大型燃煤电厂的有机朗肯循环(ORC)低温余热发电中试平台在国家电投重庆公司开州发电公司投运。该中试平台由重庆公司绿动能源公司与上海成套院、湘电动力等系统内外单位联合研发建设,以开州发电公司汽包连续排污水为热源,集合高效磁悬浮、一体式高速永磁向心透平发电机
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第2期)显示,CECI沿海指数中高热值煤种现货成交价格小幅上涨。曹妃甸指数继续上涨。进口指数中高热值规格品现货成交价格下降。CECI采购经理人指数连续两期处于收缩区间,分项指数中,除价格分指数处于扩张区间外,其他分指
CarbonBrief网站发表文章《分析:经合组织38个国家中仅剩五项燃煤电厂提案》:自2015年巴黎协定签署以来,经济合作与发展组织(OECD)地区在建新燃煤电厂的数量已降至历史最低水平。OECD是一个成立于1961年的政府间组织,拥有38个成员国,旨在促进经济增长和全球贸易。它包括世界上许多最富裕的国家。
近日,中国能建鸡西多能互补能源基地2×660兆瓦超超临界燃煤电厂项目获得黑龙江省发改委核准批复,中国能建投资公司取得900兆瓦风电指标,标志着中国能建东北首个多能互补能源基地成功落地。鸡西多能互补能源基地位于黑龙江省鸡西市,项目总投资约145亿元,总装机容量272万千瓦,采用“风火储一体化”
北极星电力网获悉,据外媒报道,印度尼西亚总统普拉博沃·苏比安托(PrabowoSubianto)宣布政府计划在未来15年内淘汰所有燃煤和其他化石燃料发电厂,同时大幅提高该国的可再生能源产能。“印度尼西亚拥有丰富的地热资源,我们计划在未来15年内逐步淘汰燃煤和所有化石燃料发电厂。我们的计划包括在此期
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2024年第43期)显示,本期(2024.11.14-2024.11.22)CECI曹妃甸指数、沿海指数中高卡现货成交价格均延续下降趋势,且降幅有所扩大,进口指数高卡煤种继续下降,中低卡煤种小幅上涨。CECI采购经理人指数在连续两期处于扩张区间后下
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!