登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋等均产生大量高浓度氨氮废水。
排入水体不仅引起水体富营养化,造成水体黑臭,而且将增加给水处理的难度和成本, 甚至对人群及生物产生毒害作用。
吹脱、蒸氨、生物法是三种国内外公认处理高浓度氨氮废水的技术,也是处理高浓度氨氮废水的主要方法。
氨氮废水处理吹脱工艺特点andanfeishuichulichuituogongyi
吹脱工艺通常主要针对废水中的氨氮浓度在2000mg/l以下:氨氮在水中以NH3和NH4+存在,它们之间存在如下平衡:
NH3+H2O NH4++OH-
平衡受PH影响,PH升高则水中的游离氨升高,平衡向右移动,游离氨的比例较大,当PH=7,氨氮大部分是以NH4+存在。当PH上升至11.5时,氨氮在废水中98%是以游离氨存在。
pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式的平衡,温度升高,平衡向右移动。
氨氮废水吹脱处理要点andanfeishuichuituochuliyaodian
影响氨氮吹脱效率的主次因素顺序为pH>温度>吹脱时间>气液比,根据以往运行经验污水pH>10,温度>30℃,气液比3000:1,吹脱时间1h,则吹脱氨氮去除效果可达到90%。
根据氨氮废水的特点,通常一级吹脱可达到85%以上的去除率,如果要求90%以上的去除率通常设计二级吹脱,吹脱技术具有成熟高效的特点。
氨氮废水吹脱控制要点andanfeishuichuituokongzhiyaodian
根据水质pH数据通常通过变频调节,使废水进塔前保证废水pH值11.5。
吹脱水温通常控制在50℃以上。
pH调整槽出水通过提升泵进入一级吹脱塔吹脱,一级吹脱塔吹脱后pH会下降。从而加入液碱进一步调节pH值.保证进入二级吹脱的废水pH≥l1.5,氨氮吹脱塔,采用二级逆流方式。
氨氮废水处理工艺说明andanfeishuichuligongyishuoming
在碱性条件下(pH=11.5),废水中的氨氮主要以NH3的形式存在,让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。
吹脱塔内装填塑料板条填料(不易结垢),采用乱堆装填方式,填料间距为40mm,填料高度6m(分3层)。
空气流由塔的下部进入,与填料反复溅水形成水滴,使气液相传质更充分、更迅速,废水最终落入塔底集水池。
氨氮废水吸收处理工艺特点andanfeishuixishouchuligongyitedian
吹脱塔排放的尾气中含有大量氨气,直接排放对厂区周围环境造成很大影响因此吹脱出的NH3吹入吸收塔。
塔型采用填料塔形式,酸槽中的30%稀硫酸用耐腐蚀泵抽至吸收塔塔顶经分布器均匀喷洒,沿填料表面形成液膜下流,与自下而上的NH3气体充分接触,生成的(NH4)2SO4流入酸槽循环使用用作后续pH调整。
达到一定浓度后(NH4)2SO4可回用于车间,从而达到环境效益和经济效益平衡。
吹脱塔和吸收塔材质通常采用碳钢内衬FRP材质。
氨氮蒸氨工艺特点andanzhengangongyitedian
蒸氨塔从属于解吸塔,适合氨氮浓度在5000mg/l浓度以上的氨氮废水处理。
蒸氨是使溶解于循环水中的氨气通过热载体的传热而挥发释放出来的操作设备。
工作原理为:采用一般的载热体水蒸汽作为加热剂,使循环水液面上氨气的平衡蒸汽压大于热载体中氨气的分压,汽液两相逆流接触 ,进行传质传热,从而使氨气逐渐从循环水中释放出来 ,在塔顶得到氨蒸汽与水蒸汽的混合物,在塔底得到较纯净的循环水。
总之,加碱源的目的是使固定铵盐转化为挥发铵盐。
蒸氨塔工艺技术特点zhengantagongyitedian
蒸氨塔的塔壳、塔板设有泡罩,泡罩下边缘为锯齿状,将泡罩溢出的气体均匀分割成多股气流进入液相中,消除了气流在液相中的偏析现象,使得气液充分接触,传质效果好,蒸氨效率高,去除氨氮效率高。
采用常压操作,塔顶操作温度约为105℃,塔底操作温度约为110℃。利用蒸汽循环工艺对含氨废水进行汽提脱氨,选用SS316L材质。
蒸氨塔氨回收方式zhengantaanhuishoufangshi
针对蒸氨工艺,氨气回收方式通常按照硫酸铵或液氨的方式回收。
如果采用硫酸铵方式回收则配套提供氨气吸收塔,把排出的含氨蒸汽送入氨气吸收塔的底部,利用由塔顶喷淋下来的30%左右的稀硫酸吸收其中的氨,在塔底部生成30%左右的硫酸铵溶液。
如果采用液氨方式回收,则提供冷凝器方式。
蒸氨处理工艺特点zhenganchuligongyitedian
蒸氨塔塔釜高温水与废水进行热交换,充分利用热量并保证废水进脱氨塔的温度。
采用高通量、低阻降、高分离效率、抗结垢、抗颗粒的塔板与塔内件。
低能耗,运行装机功率小,整个系统自动化程度高。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
[摘要]采用物理和化学方法对电镀废水中高浓度氨氮进行处理。应用响应面法对氨氮吹脱工艺进行优化,在最佳工艺条件下(pH=11、流量2L/min、时间60min),氨氮去除率为98%。吹脱后的废水经次氯酸钠深度氧化,结果显示,次氯酸钠投加量为30mL/L,反应时间为10min时,氨氮去除率达95.43%。同时研究了超声
随着工农业的发展和人民生活水平的提高,含氮化合物废水的排放量急剧增加,已经成为环境的主要污染源而备受关注。小伙伴们知道什么是高浓度氨氮废水吗?知道高浓度氨氮废水的危害有哪些吗?今天小编就和大家一起来探寻高浓度氨氮废水的前世今生。含氮物质进入水环境的途径主要包括自然过程和人类活动两
氨氮废水处理技术有哪些?本文为您介绍:1、吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。而控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于
经过“九五”“十五”“十一五”期间的不懈努力,辽河流域水污染得到有效控制,水质得到一定改善。“十一五”期间辽河流域水环境治理过程中,由于加强了对化学需氧量(COD)的污染控制,2009年流域断面COD达标率首次达到100%。但是,流域近6年的断面氨氮达标率在15.4%~48.1%之间波动,严重影响了河流
高浓度氨氮废水处理技术氨氮质量浓度大于500mg/L的废水称为高浓度氨氮废水。工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点。针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。一、吹脱法将空气通入废水中,使废水中溶解性气体和易挥发性
到目前为止,传统的中低浓度氨氮工业废水处理技术主要有吹脱法、化学沉淀法、折点氯化法、生物脱氮法、离子交换法、催化氧化法等,还有其他一些非常规的废水处理方法,如膜分离法、电化学氧化法、电渗析法、超声波法、微波法、土壤灌溉法、藻类养殖法等。吹脱法原理吹脱法是利用氨气(NH3)等挥发性物质
氨氮废水作为一种很难处理的工业废水,也分为低浓度和高浓度,两种废水处理方法不同。本文详解高浓度氨氮废水和低浓度氨氮废水处理工艺,详细对比见下文。高浓度氨氮废水处理技术氨氮质量浓度大于500mg/L的废水称为高浓度氨氮废水。工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排
近年来国内外出现了一些全新的污水处理工艺:脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。短程硝化反硝化生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将
1引言高浓度氨氮废水采用生化方法处理时,需要较高的供氧量和生物量,因而成为生化处理含氮污染物的难题之一.传统的生物脱氮工艺(即硝化-反硝化工艺)普遍存在着占地面积大、能耗高、外加碳源需求量大及脱氮效率低等不足.部分亚硝化和厌氧氨氧化联合技术是新型的废水生物脱氮方法,与传统的生物脱氮方法
一、高浓度氨氮废水技术高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋等均产生大量高浓度氨氮废水,排入水体不仅引起水体富营养化,造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用。吹脱、蒸氨、生物法是三种国内外公认处理高浓度氨氮废
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
我将个人最近调试处理的硝化反应崩溃项目和大家分享一下,不足之处还请各位前辈指正!2022年8月15日,客户打电话说生化出水氨氮最近一直上升最高已经350了,因为出水一直超标目前厂里已经停产了(工业胶生产),目前生化已经停止进水,开始闷曝了(闷曝5天氨氮没有任何变化)。客户当时还是很着急的,
在这里我和大家分享一下我在高氨氮污水处理这方面的一些经验和教训。选这个项目的原因是这个项目是我处理过的污水中氨氮处理难度最大的项目。并且这个项目历时8个月,期间我掉池子里腿骨折,瘸了半年,现在碎骨头还在腿里。自己选的路,含着泪也要走。没办法,打着石膏拄着拐杖硬是把这个水调了出来。
对应CNP比的数值,很多小伙伴都存在误区,其实工艺不同CNP比也不同,好氧除碳工艺要求CN比100:5:1,脱氮工艺要求CN比4~6,除磷工艺要求CP比15:1,厌氧除碳工艺要求CNP比300:5:1,可以看出CNP比100:5:1只是好氧除碳工艺的要求,那这个比例是怎么来的?
以某化工生产企业废水为例,介绍高效吹脱法+折点氯化处理高氨氮废水的工程实例。该工程设计规模为3000m3/d,即125m3/h,进水NH3-N质量浓度高达1200mg/L。实践表明,采用该工艺处理高氨氮废水效果很好,出水NH3-N质量浓度小于15mg/L,可达污水综合排放标准(GB8978-1996)一级排放标准。
工业废水具有广泛的来源和类型。随着工业生产技术的进步,工业废水中的成分也变得多样化。其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。
吹脱法多用于处理中高浓度、大流量氨氮废水,吹脱出的氨可以回收利用,但有容易结垢、低温时氨氮去除效率低、吹脱时间长、二次污染、出水氨氮浓度仍偏高等缺点,所以明确影响吹脱法的关键因素,提高氨氮去除率,对于氨氮处理成本控制、水污染得到控制、实现城市的可持续发展具有重要的意义。
近年来因氨氮废水排放导致的污染问题日益严重,大量的氨氮废水直接排入水体会造成水体富营养化,破坏生态平衡,引发系列环境问题,严重危害生态安全。氨氮废水的处理一直是环保行业关注的重点,主要处理方法有氨吹脱法、反渗透法、化学沉淀法、电化学氧化法、生物法等。然而近年来氨氮废水的处理逐渐由
厌氧氨氧化与短程硝化反硝化的区别,很多小伙伴容易搞混,本文从两个工艺本身的原理出发写一写两个工艺的异同点!一短程硝化反硝化生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N的过程;然后通过反硝化作用
做高氨氮废水十余年,经历了无数次氨氮TN超标的情况,中间酸甜苦辣各尝了一遍,不过很有借鉴意义,今天就聊聊在这过程中遇到的案例和解析!总氮的问题不复杂,读懂这篇文章大家以后遇到常见的总氮超标问题也能够得心应手了!一、氨氮超标导致的TN超标氨氮不达标,TN也很难达标,氨氮超标的情况有以下几
当下,污水氨氮含量超标问题被重视,相关处理技术如雨后春笋般纷纷涌现。生物脱氮法、物化除氮法、折点氯化法、化学沉淀法、离子交换法、吹脱法等,均各有优势。随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮
7月14日,黑龙江省生态环境厅就哈尔滨市群力污水处理厂入何家沟排口水质氨氮浓度超标、污水溢流问题,约谈哈尔滨市群力污水处理厂运营企业哈尔滨康达环保投资有限公司。据了解,6月21日,哈尔滨市群力污水处理厂二期5台鼓风机发生故障,导致部分污水处理设施停运。哈尔滨康达环保投资有限公司虽采取应
东莞市位于广东省中南部,珠江口东岸,东江下游的珠江三角洲。因地处广州之东,境内盛产莞草而得名。境内水域丰沛,有东引运河、寒溪河、黄沙河、寮步河等河流。
这一期我们继续讨论如何利用流程图的方式来检查氨氮超标,公众号将用很多的篇章来讨论这种流程图的工艺异常解决方案,大家在阅读中,可以看到在整个工艺解决的流程图过程中,对工艺运行进行了全面和系统的分析。我们很多污水厂在遇到工艺问题后,通过一些手段解决之后,发现在后期的运行中,工艺解决方
摘要:近年来,国家环保力度加大,在废水中相应的污染物排放标准提高的同时,废水处理技术也在不断创新。作为污染排放的重要产业,工业氨氮废水的处理方法尤为关键。本文结合氨氮废水的不同浓度,重点分析工业氨氮废水的处理方法。氨氮废水存在于冶金、石油化工、制药等工业之中,随着工业的迅速发展,
膜生物反应器(Membranebioreactor,MBR)工艺在城市污水处理和回用工程中的可行性和高效性已经得到了广泛的验证,并在近些年在中国呈现快速增长的趋势。使用具有微滤/超滤特性的膜分离单元,代替传统活性污泥工艺中的二沉池,在高效地实现泥水分离的同时,提升了生化处理系统的污泥浓度,进而使得MBR在
水质清澈,白鹭翱翔,大片大片的千屈菜、再力花生长旺盛在山东省泰安市天泽湖湿地,处处绿意盎然,生机勃勃。泰安市环保局局长乔建博告诉记者:天泽湖湿地水质净化工程主要对泮河来水进行深度处理,利用水生植物、微生物协同降解作用,年削减COD1095吨、氨氮237.25吨、总磷43.8吨,可有效提升泮河入大
记者8月28日从济南市环保局了解到,2014年上半年,济南四项大气主要污染物同比均有所改善,综合改善率15.3%,并获得省生态补偿资金742万元;4条省控重点河流出境断面主要污染物COD、氨氮浓度同比分别改善4.36%和39.35%。下一步,济南市环保局将综合施策推进环境空气质量改善,健全空气质量监测网络,在现有16个空气自动监测子站的基础上,新增建14个子站。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!