登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:氮磷作为湖泊富营养化的重要元素,一直受到人们的关注。本文综述了处理氮磷废水的主要技术及相关应用,并对未来的发展提出展望。
关键词:氮;磷;废水
1废水脱氮技术
1.1吹脱法
吹脱、汽提法对于脱除水中溶解气体和某些挥发性物质有较好的效果。吹脱法去氮是利用NH4+与NH3的动态平衡,将废水中的离子态铵,通过pH值的调节转化为分子态氨,向装置吹脱载气,游离的分子态氨利用气液接触带离水中。按载气方式的不同可分为空气和蒸汽吹脱[1]。低浓度废水在室温下用空气吹脱,而高浓度废水则常用蒸汽进行吹脱。吹脱是一个传质过程,即在高pH时,使废水与空气密切接触从而降低废水中氨浓度的过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差值。按载气方式的不同可分为空气和蒸汽吹脱。
与直接脱氮相比,加入脱氮剂的脱氮效果要更好一些。发现吹脱工艺对水量较少的高浓度氨氮废水的脱氮有较好的作用。对于浓度在8000~10000mg/L的NH3-N废水采用吹脱工艺处理时,采用水温45~55℃;气水比为3000~4500∶1;HRT为2~3h;pH在10.5~11.5之间,脱氮剂采用椰油酸系列的复合制剂,吹脱时间不小于2h时,氨氮的去除率最高。
以平均氨氮浓度550mg/L以上的猪场废水为研究对象,利用高效复合脱氮剂物化法处理高浓度氨氮废水。试验证明与直接脱氮相比,投加高效复合脱氮剂能够降低反应时间,提高氨氮去除率,最高可提高7.6%。但脱氮剂投加量变化对氨氮去除率影响较低。
除了采用脱氮剂的方法,还可采用联合工艺去氮。利用蒸氨-吹脱法联合处理工艺处理高浓度脂肪胺污水。污水的氨氮浓度最高达21985mg/L,COD8925mg/L,设计污水处理量200t/d。针对脂肪胺污水中有油类的存在,所以先利用混凝剂和液碱调整pH,使有机胺破乳分离,铵盐亦转化为游离氨。再依次进入蒸氨和吹脱。结果表明,利用蒸氨-吹脱法处理法后出水氨氮可降低至600mg/L以下,经过进一步处理可达国家一级排放标准。但蒸氨-吹脱法工艺成本较高,不适于水量大,氨氮含量低的水量。而且运行中要注意对蒸氨系统进行清洗维护。
1.2折点氯化法
折点氯化法是在低浓度氨氮废水中加入次氯酸钠或氯气,依靠次氯酸钠和氯气的强氧化性,将废水中的氨氮氧化为N2的脱氮方法。
理论上,将氯气通入废水中达到某一点,在该点时水中游离氯含量较低而氨氮的浓度降为零,当氯气通入量超过该点时,水中的游离氯增多,即自由余氯。因此,将氨氮全转化为氮气时氯气通入量点称为折点,该状态下的氯化称为折点氯化。
利用折点加氯法率处理时所需的实际氯气量取决于温度、pH值及氨氮浓度。理论需氯量取决于氨氮的浓度,两者质量比为7.6:1,实际应用中为了保证完全反应,一般氧化lmg氨氮需加9~10mg的氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2h。虽然氯化法反应迅速,所需设备投资少,但液氯的安全使用和贮存要求较严,处理成本也较高。若用次氯酸或二氧化氯发生装置代替使用液氯,可以缓解安全问题,但成本又有增加。副产物氯胺和氯代有机物会造成二次污染,增加出水对生物致癌、致畸的潜在危险性。折点氯化法处理后的出水在排放前一般需用活性炭或O2进行反氯化,以去除水中残余的氯。因此氯化法一般用于给水处理,对于大水量高浓度氨氮废水的处理常用于深度处理中。
用折点氯化法处理高氨氮含钴废水进行了试验及工程实践,利用吹脱法先去除废水中70%的氨氮,再利用折点加氯法,出水氨氮低至15mg·L-1以下。城市污水试验表明,折点氯化法脱氨可以使出水氨氮质量浓度<0.1mg·L-1。
采用折点氯化处理稀土冶炼废水发现pH为7,反应时间控制在10~15min时,废水中NH4+-N去除率达98%。同时与中和后的草酸沉淀母液处理发现Cl/NH4+为8:1效果最好。反应对pH、Cl/NH4+投入比的要求较为精确,在实际工程中需要准确操作。反应后余氯含量高于废水排放标准,去除率达98%以上,在折点氯化反应后投加适量Na2SO3还原余氯,可使余氯得到有效去除,且费用较低。
1.3离子交换法
离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。常规的离子交换树脂不具备对氨离子的选择性,故不能用作从废水中去除氨氮,目前常用沸石作为去除氨氮的离子交换体。
沸石是一类多空含水的架状铝硅酸盐矿物,它的骨架结构由硅(铝)氧四面体通过氧桥相互连接构成,由于硅连接方式的不同,形成了很多孔穴和孔道。孔穴和孔道会被具有移动性的阳离子和水填充,可进行阳离子交换,加热可使水从沸石中脱出,而沸石结构不会破坏。氨有很强的极性,且分子小于沸石孔径,斜发沸石对氨氮有较高的选择性,其交换能力远大于活性炭和离子交换树脂。通过物理、化学方法处理可提高沸石的孔隙率和阳离子交换能力,对氨氮的处理容量和选择性进一步增强。
近年来,国内外大量研究了斜发沸石和丝光沸石在微污染饮用水源处理中的应用。沸石是一种廉价的无机非金属矿,在净水方面有有取代昂贵的活性炭目的趋势,利用它去除水中的氨氮效率高,工艺简单,易再生,处理成本低,可为水中氨氮的去除提供一条高效、经济的新途径。
1.4生物脱氮法
生物脱氮是在硝化细菌和反硝化细菌的联合作用下将废水中的含氮污染物转化为氮气的过程。生物脱氮主要是经过以下步骤进行的:
1.4.1氨化反应
氨化反应是指有机氮在微生物细胞外经一系列复杂反应转化为氨氮的反应过程。有机氮中氮的价态一般为负三价,与氨氮中氮的价态一致,反应能量来自于自身的氧化还原反应,所以氨化反应比较容易进行。氨化反应时维持地球氮平衡的重要反应之一,避免了有机氮的堆积。
1.4.2亚硝酸氧化
在好氧条件下,亚硝酸氮能够迅速转化为硝氮。亚硝酸氧化和好氧氨氧化是硝化反应的组成部分。亚硝酸盐氧化菌是化能自养型微生物,通过氧化亚硝酸盐释放能量来维持其生命活动。反应过程迅速,不消耗酸碱。
1.4.3反硝化
缺氧状态下,反硝化菌能将硝酸盐氮转化为氮气,是生物脱氮的最后一步,常利用于污水处理中。反硝化菌分为自养型和异养型。自养反硝化菌以氢、铁或硫化物为能量来源,无机碳作为碳源合成细胞。而异养反硝化菌以有机物为碳源,电子受体为能量来源。自然界中常见的是异养型反硝化菌。
生物脱氮是涉及到众多生物的反应联合。针对生物脱氮成本低、效果好开发出了多种生物脱氮路径,如常见的A2O工艺,SBR工艺,氧化沟工艺等。如今人们更加注重各个工艺间的相互配合,提高生物活性,加强氨氮去除率。
2总结与展望
近些年来,脱氮除磷的方法有了许多巨大的突破,针对各类高浓度氮磷废水也有不同的方法治理。目前,多种工艺方法联用成为新的研究热点,并且已有实践证明其效果较好。今后人们也会更加注重这方面的运用,加强工艺之间的联系,提高出水水质,降低运行成本,达到理想的出水氮磷指标。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近年来含氮污/废水的排放日益增加,2018年全国城镇污水处理厂日均处理水量达1.67亿m3,其中,氨氮削减量达119万t。氮素的过量排放会导致水体富营养化,危害水生生物,破坏生态系统;此外,过量的氮素摄入也会对人体健康造成威胁。环境中氮的价态在-3价至+5价之间变化,其中-3、0、+1、+2、+3、+5价态的
传统生物脱氮方法在废水脱氮方面起到了一定的作用,但仍存在许多问题。如:氨氮完全硝化需消耗大量的氧,増加了动力消耗;对C/N比低的废水,需外加有机碳源;工艺流程长,占地面积大,基建投资高等。
摘要将耐盐脱氮复合菌剂投加到序批式生物反应器中,构建生物强化高盐废水处理系统(SBR1),以未投加复合菌剂系统(SBR2)作为对照,分析典型周期中氮素和溶解氧的变化趋势以及盐度冲击对脱氮效果的影响。实验表明,在曝气时间为6h时,生物强化系统脱氮率可稳定在96%以上,出水总氮浓度为3.8mg/L左
1引言(Introduction)甲烷(CH4)是仅次于CO2的第2种重要的温室气体.如何减排温室气体CH4成为了全球关注的焦点.同时,生物脱氮是当前废水处理领域的研究热点.污水处理厂中通常通过硝化和反硝化实现生物脱氮,而目前城镇污水普遍存在C/N比低的问题,导致在反硝化过程中往往需要大量的外加碳源.而在污水处理厂
针对钴冶炼中排出的高镁硫酸铵废水,以硫化钠为沉淀剂去除钴镍,采用磷酸二氢铵除镁+四效逆流降膜真空蒸发法组合工艺,可综合回收硫化钴与硫化镍、磷酸铵镁、硫酸铵,其中磷酸铵镁和硫酸铵产品均达到国家一级标准,最终废水中氨氮le;8mg/L。生产实践表明:年处理30万t高镁硫酸铵废水,可回收300t硫化镍
氮素在水体中的过度积累造成了水体富营养化现象,严重危害生态系统安全。一般采用生物法进行废水脱氮。硝化反硝化工艺是应用最普遍的生物脱氮工艺。最近十几年,出现了一些新的脱氮工艺。厌氧氨氧化工艺是其中最有代表性的突破之一。该方法是利用自养型细菌将氨直接氧化为氮气而实现脱氮的工艺,与传统
过量的硝酸盐可导致婴儿高铁血红蛋白症,也可形成高度致癌的亚硝胺或亚硝酰胺,世界卫生组织(WHO)规定饮用水中的硝酸盐氮(NO3-N)浓度应低于10mg/L[1]。然而,由于施肥引起的硝酸盐淋溶流失、污水处理过程中总氮(TN)去除不彻底、自然水体中氮素的不断积累等原因,导致水体硝酸盐污染已成为当前重
厌氧氨氧化技术(anammox)是20世纪90年代由荷兰代尔夫特大学开发的一种新型自养生物脱氮工艺,与传统脱氮技术相比,自养型厌氧氨氧化工艺被认为是一种更高效、节能的废水处理方法,其在厌氧或缺氧条件下以NO2--N为电子受体,利用厌氧氨氧化细菌(anaerobicammoniaoxidationbacteria,AnAOB)将氨氮直接氧化为氮气。在节约了硝化反应曝气能源的基础上,还无需外加碳源,且由于AnAOB属自养型微生物,生长缓慢,因此,可大大减少工艺的污泥产量。
2021年11月3日,2020年度国家科学技术奖励大会在人民大会堂隆重举行。由哈尔滨工业大学、北京工业大学、中国科学院生态环境研究中心、中持水务股份有限公司、信开水环境投资有限公司共同完成的“污水深度生物脱氮技术及应用”项目(编号2020-F-304-2-01)荣获国家技术发明奖二等奖,主要完成人为:王爱杰、彭永臻、程浩毅、梁斌、邵凯、侯锋。
2020年度国家科学技术奖励大会11月3日在北京举行。本次奖励大会共公布国家自然科学奖授奖项目46项,国家技术发明奖授奖项目61项,国家科学技术进步奖授奖项目157项,并授予8名外籍专家和1个国际组织中华人民共和国国际科学技术合作奖。
传统生物脱氮方法在废水脱氮方面起到了一定的作用,但仍存在许多问题。如:氨氮完全硝化需消耗大量的氧,増加了动力消耗;对C/N比低的废水,需外加有机碳源;工艺流程长,占地面积大,基建投资高等。
作为水处理从业人员,近些年又有哪些值得关注的热点技术呢?今天小编就简单盘点一下本行业中的常用技术,由于本人从事污水方向,给水只能说几个大方向,如果有所疏漏,还望大家指点。一、给水方向1.膜技术。这个不管是高校,中科院,还是企业,都在做。随着材料技术越来越深入,这个方向也越来越吃香,
短程硝化-厌氧氨氧化工艺是一种新型高效的自养生物脱氮技术,在处理高氨氮、低碳氮比废水方面具有诸多优势和良好应用前景。相较于传统生物脱氮工艺,短程硝化-厌氧氨氧化工艺具有脱氮效率高、无需外加有机碳源、节约60%曝气量、降低90%剩余污泥产量、显著减少温室气体排放等优点。其关键的一步是快速启
本篇内容以滇池流域为例,讲解了稳定固相反硝化脱氮技术的研究成果、成果组成及先进性、成果应用等内容。
2020年度国家科学技术奖初评工作已经结束。根据《国家科学技术奖励条例实施细则》的规定,现将初评通过的46项国家自然科学奖项目、47项国家技术发明奖通用项目、133项国家科学技术进步奖通用项目,以及2019年度初评通过、因异议处理中止评审,现已调查处理完毕,按规则提交2020年度评审的国家技术发明
本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。01、污水脱氮方法简介目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法
传统生物脱氮方法在废水脱氮方面起到了一定的作用,但仍存在许多问题。如:氨氮完全硝化需消耗大量的氧,増加了动力消耗;对C/N比低的废水,需外加有机碳源;工艺流程长,占地面积大,基建投资高等。近年来,生物脱氮领域开发了许多新工艺,主要有:同步硝化反硝化;短程硝化反硝化;厌氧氨氧化和全程
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!