登录注册
请使用微信扫一扫
关注公众号完成登录
图2 运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#中不同取样点处pH的变化
Fig.2 Changes of pH at each sampling point in 1#and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV
pH是影响试验槽1#和试验槽2#中2,4-DNT去除率的关键影响因素,主要是因为2,4-DNT的还原和ZVI/GAC混合形成原电池的过程均与溶液中的H+浓度有关[24]. 图2为试验槽1#和试验槽2#在运行周期1 PV、2 PV、3 PV和5 PV时各取样点处pH的变化. 从图2可见:试验槽1#在运行周期5 PV内,pH均先由6.9(取样点1)急剧增至11.0左右(取样点2),而后稳定在11.0左右;试验槽2#在运行周期5 PV内,pH均先由6.9(取样点1)缓慢增至7.8(取样点4),而后急剧增至11.0左右(取样点5),并逐步稳定(pH=11.4). pH急剧增加的原因主要归因于2,4-DNT污染的地下水(pH=6.9)经过了PRMs填充层(笔者所在研究团队制备的PRMs呈碱性),因此在2,4-DNT污染的地下水经过PRMs填充层时,pH急剧增至11.32~11.93. 在试验槽2#内,2,4-DNT污染的地下水先经过ZVI/GAC填充层,使得2,4-DNT先与ZVI/GAC发生还原反应,同时ZVI/GAC混合形成原电池加速ZVI自身电化学腐蚀,产生OH-使体系pH增大,而GAC表面具有酸性和碱性含氧官能团,也可使pH变化缓慢. 因此,PRMs填充层位置显著影响了试验槽1#和试验槽2#中pH的变化,2个试验槽中pH均可显著增至11.0左右.
图3 运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处ORP的变化
Fig.3 Changes of ORP at each sampling point in 1#and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV
在不同预处理方式下,试验槽1#和试验槽2#中ORP值也表现出一定的变化规律. 由图3可见,在运行周期5 PV内,试验槽1#中ORP值呈先增后降的趋势,其在取样点6、7基本趋于稳定. 这主要是因为在试验槽1#中,2,4-DNT污染的地下水先经过PRMs填充层,PRMs填充层释放大量的S2O82-,造成体系中氧化剂浓度增加,之后2,4-DNT与释放的S2O82-发生氧化反应消耗了体系的氧化剂,取样点3之后体系内的氧化剂逐渐消耗,ORP值逐渐降低,最终保持稳定. 试验槽2#内ORP值在取样点4之前呈略微下降趋势,之后呈先升后降的特征. 这是因为在试验槽2#内,2,4-DNT污染的地下水经ZVI/GAC填充层后,水体中溶解氧和2,4-DNT竞争与ZVI/GAC发生还原反应消耗了溶液体系的溶解氧;同时,ZVI/GAC发生微电解也进一步降低了体系中2,4-DNT的浓度,增加了体系还原性物质浓度,使得体系ORP值呈略微下降趋势;随后2,4-DNT污染的地下水经过PRMs填充层,缓慢释放的S2O82-增加了体系氧化剂的浓度,之后2,4-DNT、Fe2+与S2O82-发生氧化反应消耗S2O82-氧化剂,从而使得体系ORP值呈先升后降的变化特征. 另外,溶解氧与ZVI反应在ZVI表面形成氧化物层,氧化物层会严重阻碍ZVI与2,4-DNT反应过程中的电子传递,抑制ZVI的反应活性,从而降低了2,4-DNT的还原降解效率. 因此,PRMs填充层的位置显著影响了试验槽1#和试验槽2#中ORP值的变化.
2.2不同预处理方式对试验槽内S2O82-和Fe2+浓度的影响
ZVI活化S2O82-是利用ZVI作为Fe2+的来源,ZVI既是过硫酸盐的活化剂,又是还原反应的还原剂. ZVI作为一种非均相催化剂,可以缓慢释放Fe2+,从而控制反应速度,保证体系持续高效地降解污染物. 为了说明不同预处理方式下ZVI/GAC 对PRMs的活化效能,需对运行过程中试验槽体系内水流取样,分析不同运行周期内,体系中Fe2+和S2O82-浓度的变化趋势.
图4 运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处Fe2+浓度的变化
Fig.4 Changes of the Fe2+concentration ateach sampling point in 1# and 2# tanksduring 1 PV, 2 PV, 3 PV and 5 PV
由图4可见:在试验槽1#取样点1~3处水样中几乎没有Fe2+的存在,在取样点4和5处Fe2+浓度随运行周期的增加呈降低的趋势,在取样点6和7处的Fe2+浓度几乎为0;在试验槽2#取样点2~4处水样中的Fe2+浓度随运行周期的增加呈降低的趋势,在取样点1、5、6、7处的Fe2+浓度几乎也为0. 这主要是因为试验槽1#体系内2,4-DNT污染的地下水先经过PRMs填充层,PRMs填充层处pH在11左右,水样呈强碱性. 此时,体系水样不利于ZVI/GAC填充层处ZVI发生电化学腐蚀,产生的Fe2+迅速与体系中存在的S2O82-发生活化反应,同时也与OH-反应,在其表面形成氢氧化物层,进一步降低溶液中的Fe2+浓度. 而在试验槽2#体系内,2,4-DNT污染的地下水先经过ZVI/GAC填充层,体系pH在7左右,2,4-DNT先在ZVI/GAC微电解体系下发生还原反应[29-30],同时体系逐渐向碱性变化,随后经PRMs填充层处Fe2+作为S2O82-的活化剂容易被氧化剂所消耗,此时pH陡增至11左右,易使Fe2+产生氢氧化物沉淀,从而进一步降低溶液中的Fe2+浓度. 因此,在大型试验槽中,预处理方式的不同会显著影响试验槽体系内Fe2+浓度的变化.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
汇集高品质企业的西部盛会——第6届中国环博会成都展与您相约展会时间:2025年6月25-27日展览面积:35,000㎡(预计)展会地点:成都·中国西部国际博览城展商数量:500家(预计)专业观众:30,000人(预计)组织机构主办单位l慕尼黑博览集团l中贸慕尼黑展览(上海)有限公司承办单位l中贸慕尼黑展览(上海)有限
乌兹别克斯坦塔什干州政府与北京中科润宇环保科技股份有限公司于3月2日在北京签署合作备忘录,正式推进扬吉尤利市垃圾焚烧发电项目。该工厂初期投资1.2亿美元,日处理能力800吨垃圾,并可向当地居民提供电力。未来,该项目计划扩展至日处理4000吨垃圾,总投资可能达到4亿美元。本文是中亚产业研究“乌
北极星风力发电网获悉,近日,联合动力连云港公司2025年废旧风电叶片处理服务公开招标,招标人为国能联合动力技术(连云港)有限公司,计划将废弃叶片无害化处置服务,含切割、运输、吊装、最终处置等。包括但不限于整支叶片及所属附件(如部分断肢及金属附件)的无害化处置、吊装、运输服务,含37m至7
时间:2025年8月8-10日地点:广州·中国进出口商品交易会展馆主办单位广东省粤港澳经贸合作交流促进会广东鸿威国际会展集团有限公司承办单位武汉鸿威国博会展有限公司【展览范围】1、水污染治理与生态修复展区:污水/废水处理、污泥处置、材料药剂、膜与膜组件/膜分离设备、净水设备、海水淡化、过滤设
北极星环境修复网获悉,安徽省和县生活垃圾填埋场地下水污染防控项目(EPC总承包)招标,项目工程总概算为9831.63万元,本项目最高投标限价为8235.90万元。项目主要建设内容包括:针对填埋库区及下游的污染地下水,开展修复和管控工程,涉及修复区域面积83324.84平方米。施工环节主要包括:施工准备工程
2025年是环境产业洗牌突围的赛点,与此同时,经济社会发展全面绿色转型以及大规模设备更新等趋势带动了环境科技和模式的更新与迭代,环保企业加速进化正当时。作为亚洲旗舰环保一站式解决方案赋能平台,为共寻不确定环境下的破局之道,2025年4月21-23日,第26届中国环博会IEexpoChina2025将在上海新国
7月30日,安徽省生态环境厅发布淮南洛河电厂四期2×1000MW煤电项目环境影响报告书批前公示。淮南洛河电厂四期2×1000MW煤电项目建设地点位于淮南市大通区洛河镇洛河电厂现有厂区内,在拆除后的现有一期主厂房区域、厂区东部辅助设施区域等场地上扩建2×1000MW超超临界二次再热燃煤发电机组,同步建设脱
北极星垃圾发电网获悉,7月3日,江苏省生态环境厅发布关于加快推进江苏省生活垃圾焚烧设施协同处置部分一般工业固废的建议的答复如下:凌向前代表:您提出的关于加快推进江苏省生活垃圾焚烧设施协同处置部分一般工业固废的建议收悉,现答复如下:我省作为经济大省、人口大省,每年产生的固体废物超过3
2025武汉国际环保产业博览会时间:2025年3月20-22日地点:武汉国际博览中心(汉阳)60000+规模800+展商20+论坛40000+观众主办单位(拟)湖北省环境科学学会/湖北省城镇供水排水协会武汉市水务集团有限公司/广东鸿威国际会展集团有限公司承办单位武汉鸿威国博会展有限公司/武汉国际会展集团股份有限公司【WE
时间:2025年3月20-22日地点:武汉国际博览中心(汉阳)60000+规模800+展商20+论坛40000+观众主办单位(拟)湖北省环境科学学会/湖北省城镇供水排水协会武汉市水务集团有限公司/广东鸿威国际会展集团有限公司协办单位山东省水处理协会/武汉环境保护产业协会/襄阳市生态环境科学学会湖北省节能减排研究会承
北极星垃圾发电网获悉,吉林省生态环境厅发布长岭瀚潍环保能源有限公司长岭县生活垃圾焚烧处理项目掺烧一般工业固体废物拟审批公示,在保证生活垃圾日焚烧能力500吨/天不变的前提下,利用现有生产设施掺烧一般固体废物,配套建设固体废物库房。项目设计单日掺烧能力60吨,年最大掺烧量2万吨,现有发电
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
【社区案例】前辈们,氨氮和COD很低,总氮很高是什么原因?笔者颜胖子之前写过很多氨氮和TN的文章,有些小伙伴可能还没有看过或理解,本文再次赘述一下,其实,氨氮达标,TN降不去的问题并不复杂,有时候调整一下参数就达标了,本文是借鉴之前的写的文章,并增加了反硝化HRT和脱氮效率的因素的思考!一
【社区案例】进水COD300多,氨氮100多,之前总氮没要求,现在所有池子COD都是100多,总氮也是100多,氨氮很低,总氮一直降不下去咋办?笔者颜胖子之前写过很多氨氮和TN的文章,其实,氨氮达标,TN降不去的问题并不复杂,有时候调整一下参数就达标了,本文是借鉴之前的写的文章,并增加了反硝化HRT和脱
【社区案例】AO工艺,进水氨氮160~220、TN:200~300、出水氨氮:1左右、TN:20~30,好氧区溶氧4~5,碱度也够,温度30~35,污泥SV在80%,TN一直下不去,本文是借鉴之前的写的文章,并增加了反硝化HRT和脱氮效率的因素的思考!
总氮居高不下,徘徊在超标的临界点,无从下手,进水7000多也没有超标超量,污泥浓度4500左右,内外回流100%,其他设备正常,出口溶解氧2点几,但是就是总氮下不去,恳请各位大神解救?
浙江省嘉兴市地处杭嘉湖平原,饮用水水源为地表河网水,历史上受到严重的污染。回顾了嘉兴近40年来,随着水源水质的变化和饮用水标准的不断提高,嘉兴饮用水处理技术的应对措施和发展历程,总结了从常规处理工艺到生物预处理工艺、深度处理工艺以及水源湿地技术的发展必要性和特点,尤其是根据科学原理
邯郸钢铁集团有限责任公司(以下简称“河钢邯钢”)牵头承担的“十三五”水专项“钢铁行业水污染全过程控制技术系统集成与综合应用示范”课题,针对钢铁行业高耗水、高排污的现状,开展了全过程多尺度水网络优化、过程节水、典型废水废液强化处理、水高效回用等一系列技术研究,创新开发出高盐有机废水
污泥的处理与处置已成为现代污水处理系统运行中最复杂、且花费最高的环节,如何妥善处置污泥问题是社会和行业的焦点问题。随着环保督查力度的加大以及循环经济渠道的兴起,中国的污泥处置已经迎来最好的时代,但其技术路线目前却尚无定论。本文汇总现有污泥处理技术,并展望未来主流技术路线。早期,由
[摘要]燃煤电厂脱硫废水成分复杂,具有含盐量高、腐蚀性强、易结垢等特点,是电厂实现废水零排放的重点和难点。针对该废水的特点,采用“两级软化+过滤+高级氧化”预处理、“纳滤+碟管式反渗透”膜处理、“机械式蒸汽再压缩”蒸发结晶组合工艺进行了现场中试研究。结果表明,工艺运行稳定,膜系统产
[摘要]燃煤电厂脱硫废水成分复杂,具有含盐量高、腐蚀性强、易结垢等特点,是电厂实现废水零排放的重点和难点。针对该废水的特点,采用“两级软化+过滤+高级氧化”预处理、“纳滤+碟管式反渗透”膜处理、“机械式蒸汽再压缩”蒸发结晶组合工艺进行了现场中试研究。结果表明,工艺运行稳定,膜系统产
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!