登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
本文将介绍硝化菌培养时应控制的7个重要指标及硝化系统管理的8个运行参数。
一、硝化系统的培养
硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过程。硝化细菌的培养应遵循循序渐进、有的放矢、精心控制的的原则,出水稳定后并逐步增加原水的进水量。
每次增加的进水量为设计进水量的5—10%,每增加一次应稳定2-3个周期或2天左右,发现系统内或出水指标上升应继续维持本次进水量,直至出水指标稳定,如出水指标一直上升,应暂停进水,待指标恢复正常后,进水量应稍微减少,或略大于上周期进水量。以此类推,最终达到系统设计符合。
根据影响硝化菌生长的因素来确定硝化菌培养时应控制的指标:
1、温度
在生物硝化系统中,硝化细菌对温度的变化非常敏感,在5~35℃的范围内,硝化菌能进行正常的生理代谢活动。当废水温度低于15℃时,硝化速率会明显下降,当温度低于10℃时已启动的硝化系统可以勉强维持,硝化速率只有30℃时的硝化硝化速率的25%。尽管温度的升高,生物活性增大,硝化速率也升高,但温度过高将使硝化菌大量死亡,实际运行中要求硝化反应温度低于38℃。
例如高氨废水工程的调试应尽量选择气温15度以上的季节,如果必须在冬季启动,应尽量选用高氨污水厂的菌种,或有保温、加温措施的系统。
2、pH值
硝化菌对pH值变化非常敏感,最佳pH值是8.0~8.4,在这一最佳pH值条件下,硝化速度,硝化菌最大的硝化速度可达最大值。在硝化菌培养时,如果进水pH值较高,能够达到8.0左右最好,如果达不到也不应刻意追求,只要系统内pH值不低于6.5即可,如低于此值,应及时补充碱度,如NaOH、Na2CO3等。
3、溶解氧
氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必会影响硝化反应得进程。在活性污泥法系统中,大多数学者认为溶解氧应该控制在1.5~2.0mg/L内,低于0.5mg/L时硝化反应趋于停止。当前,有许多学者认为在低DO(1.5mg/L)下可出现SND(同步硝化反硝化)现象。在DO>2.0mg/L,溶解氧浓度对硝化过程影响可不予考虑。但DO浓度不宜太高,因为溶解氧过高能够导致有机物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。此外溶解氧过高,能量消耗过大,在经济方面也不合适。
4、生物固体平均停留时间(污泥龄)
为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc)N必须大于自养型硝化菌最小的世代时间(θc)minN,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽。一般对(θc)N的取值,至少应为硝化菌最小世代时间的2倍以上,即安全系数应大于2。
5、重金属及有毒物质
有毒物质除了重金属外,对硝化反应产生抑制作用的物质还有:高浓度氨氮、高浓度硝酸盐有机物及络合阳离子等。
6、COD/BOD
如果系统内COD/BOD较高,系统内的异养菌就会与硝化菌争夺溶解氧,由于异养菌的数量远远大于硝化菌,硝化菌常常在系统内COD/BOD较高的情况下得不到一定的溶解氧,而无法生长增殖。一般系统内BOD(笔者个人倾向于COD)高于20mg/l,就会对硝化菌产生抑制。如果进水COD/BOD 过高或碳氮比较高,硝化菌的培养就必须通过延时曝气来实现,即系统内COD/BOD 已经合格或处于较低水平时,继续曝气,给予硝化菌足够的生长时间,曝气时,同样要控制好溶解氧,尽量低于3mg/L,防止污泥加速老化。
7、氨氮浓度
在系统氨氮浓度200mg/L时硝化菌就会被抑制,因此建议系统内氨氮浓度不高于150mg/L,在高氨污水处理中,由于进水氨氮浓度高,如果不注意,几个周期下来氨氮浓度就会升高到一定程度,常常在A池高于200mg/L,因此在硝化菌培养过程中以及正常运行时,应始终维持系统出水氨氮浓度在工艺要求指标以内,保证从调试开始,系统即出合格水。结合以上几种因素,在培养硝化菌时,应尽量创造其生长的有利条件,制定出最佳方案。
二、硝化系统的管理
污水中氨氮的去除主要是在传统活性污泥法工艺基础上采用硝化工艺,只有控制好运行参数才能管理好硝化系统,保证出水氨氮达标!运行参数如下:
1、污泥负荷与污泥龄
生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
2、回流比
生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。
3、水力停留时间
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
4、BOD5/TKN
TKN系指水中有机氮与氨氮之和,入流污水中BOD5/TKN是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水处理厂的运行实践发现,BOD5/TKN值最佳范围为2~3左右。
5、硝化速率
生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量。硝化速率的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素,典型值为0.02gNH3-N/gMLVSS×d。
6、溶解氧
硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。
7、温度
硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。
8、pH
硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。因此,应尽量控制生物硝化系统的混合液pH大于7.0。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
脱氮除磷工艺越来越多的应用到污水处理当中,但是在实际运行过程中,出水氮磷含量超标的情况常常困扰着水厂的工作人员。因此,厘清脱氮除磷工艺的重要参数并加以控制,能够很好的保证系统的正常运行,出水氮磷含量达标。一、氨氮超标原因及控制1、污泥负荷与污泥龄生物硝化属低负荷工艺,F/M一般在0.05
微生物的世界里面生活着一种细菌,天生娇贵,禁不起雨,经不起浪。它就是污师们又爱又恨的硝化细菌。生物脱氮的骁将,微生物界的贵族!像这样优秀的菌,为何这么难培养?看完下面这些控制条件你就知道了!一、硝化系统的培养硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过
生化反应硝化系统崩溃的几种情况分析及对应的解决办法很多污师在运行中都会遇到氨氮超标的情况,本人不才,在此做一下简单分析。一、硝化系统弱该情况下,主要是硝化菌数量不够,限制了氨氮的硝化。原因很多,比如:1、污泥龄短,硝化菌没有大量富集。解决办法:减少排泥,提高污泥龄(莫要通过投加碳
【社区案例】化工废水,因硝化池更换曝气器和过年放假水温过低造成氨氮去除率大幅降低,年后进水氨氮过高又造成冲击,现在氨氮几乎没有去除率,停止进水一周只投加少量葡萄糖没有什么改善,求各位老师指点一二。缺氧150方,好氧池450方,现在每天投加50公斤葡萄糖,二沉池氨氮接近三百,COD四百,溶解
在污水处理厂硝化系统出现问题,出水氨氮超标时,想要迅速、有效的去除氨氮,只能通过物理化学的手段来应急了!常用且有效的物化手段目前只有折点加氯及沸石吸附法!市场上的很多氨氮去除剂就是次氯酸盐,就是就是利用折点加氯的原理!本文详细介绍一下两种工艺,让大家能做到遇到问题心中有底!具体问
压泥过度导致硝化系统崩溃,怎么办?
今年年初,一位同行的云南项目硝化系统一直崩溃,未找出原因,后来通过交流从DO、水质、操作等等方面,最后判断是之前集中排泥过多导致的硝化崩溃,因为一直没有前期干预,导致系统已经无法自行恢复!
由于农业施肥的不合理使用和生活污水、工业污水、养殖污水、农田径流的直接排放,大量氮、磷等营养物质被排入自然水体,对水生生态系统的结构和功能构成严重威胁。
高效水解酸化+改良型奥贝尔氧化沟+深度处理。水解酸化与氧化沟分别为独立的污泥系统,氧化沟缺氧与好氧池的比例大致在3:2,缺氧池可以很快的转变为池。来水全部为化工园区和企业处理后排放的尾水。
近日,一位同行小伙伴的云南项目硝化系统一直崩溃,未找出原因,后来通过交流从DO、水质、操作等等方面,最后判断是之前集中排泥过多导致的硝化崩溃,因为一直没有前期干预,导致系统已经无法自行恢复!一、排泥过多为什么会导致硝化崩溃?排泥过多会导致污泥的泥龄降低,因为细菌都有世代期,SRT低于
2022全国高考卷作文题目:本手,妙手,俗手。作文提示:本手、妙手、俗手是围棋的三个术语。本手是指合乎棋理的正规下法;妙手是指出人意料的精妙下法;俗手是指貌似合理,而从全局看通常会受损的下法。本手是基础,妙手是创造。一般来说,对本手理解深刻,才可能出现妙手;否则,难免下出俗手,水平也
生化反应硝化系统崩溃的几种情况分析及对应的解决办法很多污师在运行中都会遇到氨氮超标的情况,本人不才,在此做一下简单分析。一、硝化系统弱该情况下,主要是硝化菌数量不够,限制了氨氮的硝化。原因很多,比如:1、污泥龄短,硝化菌没有大量富集。解决办法:减少排泥,提高污泥龄(莫要通过投加碳
【社区案例】化工废水,因硝化池更换曝气器和过年放假水温过低造成氨氮去除率大幅降低,年后进水氨氮过高又造成冲击,现在氨氮几乎没有去除率,停止进水一周只投加少量葡萄糖没有什么改善,求各位老师指点一二。缺氧150方,好氧池450方,现在每天投加50公斤葡萄糖,二沉池氨氮接近三百,COD四百,溶解
利用AO法脱氮除磷,必须要达到这两个条件:①为反硝化菌创造活跃的环境,积极除氮;②创造聚磷菌活跃的环境,利用以上两个作用脱氮除磷。同步脱氮除磷,在理论上是可行的,但实际操作上却很困难。
一、曝气生物滤池特点集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保
污泥负荷Ns硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化。有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗。只有有机负荷降低到一定程度,硝化细菌才开始工作进行硝化反应。对于这个污泥负荷,设计值及经验值一般小于0.15kgBOD5/KgMLss.d
1914年,Arden和Lockett发明了活性污泥法,从那时起污水处理技术的面貌便焕然一新,现代污水处理技术大厦的基石就此建立。Arden和Lockett在早期研究活性污泥法时便注意到了硝化的现象,并试图回收污水中的氨,但并不成功。今天,世界各地污水处理厂的运行过程中经常会遇到二沉池反硝化浮泥的现象,70多
一、采用生物脱氮除磷对水质要求的规定1、污水中有毒害和抑制性物质对生物脱氮除磷有较大影响,硝化菌对毒性物质比较敏感,如重金属、氰化物、三价砷、氟化物、游离氨都会对硝化产生抑制作用。反硝化菌对毒性物质的敏感性比硝化菌低,一般与好氧异养菌相同。厌氧段硝酸盐的存在明显抑制聚磷菌对磷的释
1、泥龄问题作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年
硝化菌是一类具有硝化作用的自养化能细菌,包括亚硝酸盐菌(AOB)和硝酸盐菌(NOB)两个生理菌群,硝化菌世代周期长,对溶解氧、水温、有毒物质敏感。在常见的污水处理系统的活性污泥中含量较低,但在脱氮过程中起着至关重要的作用,脱氮过程中没有硝化就无法进行反硝化脱氮,因此硝化能力强弱直接关系到城
过量的硝酸盐可导致婴儿高铁血红蛋白症,也可形成高度致癌的亚硝胺或亚硝酰胺,世界卫生组织(WHO)规定饮用水中的硝酸盐氮(NO3-N)浓度应低于10mg/L[1]。然而,由于施肥引起的硝酸盐淋溶流失、污水处理过程中总氮(TN)去除不彻底、自然水体中氮素的不断积累等原因,导致水体硝酸盐污染已成为当前重
煤化工是一项耗水量高、污染物含量高的产业,随着我国环保法规的日益严格,煤化工废水的“分质盐零排放”已经成为了必然趋势,对于新建煤化工项目而言,煤化工废水处理流程通常为:预处理—生化处理—深度处理—含盐水处理—浓盐水处理—蒸发结晶,其中含盐水处理单元一般采用双膜工艺(超滤+反渗透)
鄂尔多斯以储量丰富的矿产资源,成为全国首批资源综合利用“双百工程”示范基地。11月11-13日,中国煤化工技术交流会暨第九届中国煤化工年会在鄂尔多斯胜利召开。本届会议以“智能化推进高质量发展”为主题,来自石化联合会的领导、两院院士及企业技术专家们参加了本次会议,对我国新型煤化工发展趋势
北极星固废网获悉,江苏省应急管理厅于8月13日发布关于进一步提升硝化企业本质安全水平的指导意见,旨在有效管控硝化工艺安全风险,消除安全隐患,坚决遏制硝化企业各类生产安全事故发生。详情如下:省应急管理厅关于进一步提升硝化企业本质安全水平的指导意见各设区市应急管理局:为有效管控硝化工艺
短程硝化-厌氧氨氧化工艺是一种新型高效的自养生物脱氮技术,在处理高氨氮、低碳氮比废水方面具有诸多优势和良好应用前景。相较于传统生物脱氮工艺,短程硝化-厌氧氨氧化工艺具有脱氮效率高、无需外加有机碳源、节约60%曝气量、降低90%剩余污泥产量、显著减少温室气体排放等优点。其关键的一步是快速启
煤气化技术大会集结号汾水悠悠至,锦绣太原城。9月19日第三届中国国际煤气化技术与产业大会在山西太原盛大开启,为期两天的会议吸引了众多煤气化技术专家与学者接踵而来。泓济环保副总经理刘学文先生出席本次会议,并以HBF高效脱氮工艺和ADN厌氧反硝化工艺为技术创新点,分享了高氨氮、高硝酸盐废水治
曝气生物滤池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保持较高的
目前,越来越严格的出水水质标准使得氮的高效去除已经成为国内外污水处理厂面临的一个重要的问题,而城市生活污水中可生物降解有机物不足是氮去除效率低的主要原因;因此外增碳源的选取、制备以及性能分析得到了国内外研究者的重视。关于含碳有机物作为反硝化碳源的研究已经有大约20多年的历史。尽管许多
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!