登录注册
请使用微信扫一扫
关注公众号完成登录
2主要研究内容和成果
2.1 HA促进类Fenton体系中2,4-DCP的降解
在基于Fe(III)的类Fenton体系中,目标污染物2,4二氯酚(2,4-DCP) 60min仅能实现30%的降解,但随着溶解性有机物腐殖酸(HA)的引入,2,4-DCP的降解率达到了100%。通过拟一级反应速率计算,结果表明HA促进反应的过程以30min为界限存在明显的两个阶段,前一个阶段促进效果较弱,但后一阶段反应速率快速提升。
为了确定HA促进反应的作用机理,研究分别通过紫外全扫以及紫外差分法对比分析了溶解态Fe(III)和Fe(OH)3的浓度变化。随着HA的浓度逐渐上升,Fe(III)的水解作用逐渐减弱,体系中生成的Fe(OH)3的浓度也逐渐降低。此外,对Fe(III)和HA-Fe(III)系统进行循环伏安分析表明:HA的引入使Fe(III)/Fe(II)氧化还原电势EMφ从0.152 V/NHE降低到0.105V/NHE,表明引入HA后Fenton反应在热力学上是有利的,相比Fe(III)/Fe(II),HA- Fe(III)/Fe(II)具有更高还原能力,这一结果通过H2O2-Fe(III)和H2O2-HA-Fe(III)的Pt电极开路电位进一步得到了印证。
图1 (a)不同体系中2,4-DCP降解对比;(b)2,4-DCP降解拟一级反应速率对比
图2 (a)不同HA浓度条件下Fe(III)浓度变化;
(b)Fe(III)与HA-Fe(III)系统中,特定紫外差分吸光度的变化;
(c) Fe(III)与HA-Fe(III)配位化合物的循环伏安分析;
(d) H2O2-Fe(III)和H2O2-HA-Fe(III)系统中Pt电极开路电位对比分析
2.2 HA-Fe(III)配位化合物的形成及作用
通过Visual MINTEQ软件分析了Fe(III)溶液中的铁形态占比变化,随着HA浓度逐渐增加,游离态Fe(III)逐渐降低,配位态HA-Fe(III)显著上升,同时2,4-DCP的降解速率也逐渐增加。此外,采用透析袋检测技术精确测定了配位态HA-Fe(III)的浓度变化,并通过线性拟合,表明配位态HA-Fe(III)浓度与拟一级反应速率的拟合呈现较高的相关性。证明了HA和Fe(III)的配位作用形成的HA-Fe(III)配位化合在促进2,4-DCP的降解过程中起显著积极的作用。
图3 (a)不同HA浓度条件下铁形态占比变化;
(b) HA浓度对H2O2-HA-Fe(III)体系降解2,4-DCP影响;
(c)不同HA浓度条件下HA-Fe(III)配位化合物浓度监测;
(d)HA-Fe(III)配位浓度与kbos线性拟合
2.3 HA-Fe(III)配位梯级理论研究
还原产生的Fe(II)和H2O2在氧化降解2,4-DCP过程中起着重要的作用,通过监测Fe(II)的浓度和H2O2的分解速率,表明HA的引入能够有效促进Fe(III)的还原以及H2O2的分解。Fe(II)的产生存在先上升后下降的两个趋势,而H2O2的分解则是先慢后快,与目标物的降解趋势相契合。以此进一步监测了HA-Fe(III)配位化合物的生成速率,结果亦呈现两个不同的阶段(配位阶段和促进还原阶段)。此外,由于HA与Fe(III)的配位过程会导致HA的荧光淬灭,通过荧光时间扫描能有效地监测HA-Fe(III)配位化合物形成过程,结果表明HA的荧光强度变化趋势与配体形成阶段相符合。HA的引入能有效促进2,4-DCP的降解,但由于HA和Fe(III)的配位速率存在梯级变化,从而导致HA的促进作用也呈现先慢后快的阶段性变化。
图4 (a) Fe(II)在HA-Fe(III), H2O2-Fe(III)和H2O2-HA-Fe(III)体系中的浓度监测;
(b) H2O2在H2O2-Fe(III)和H2O2-HA-Fe(III)体系的降解比较;
(c) HA-Fe(III)配位化合物浓度的时间变化;
(d) HA荧光强度的时间变化
2.4自由基的识别与产生机理
为确定体系中的自由基,分别选取羟基自由基(·OH)淬灭剂叔丁醇和超氧自由基(·O2-)淬灭剂三氯甲烷进行淬灭实验,同时采用电子顺磁共振技术进行自由基捕获检测。结果表明,体系中羟基自由为主要的氧化活性物质,同时超氧自由基也扮演着重要的作用。进一步采用稳态模型估算了体系中·OH和·O2-的生成速率,分别为7×10-9Ms-1和2.14×10-3M s-1。
图5 (a)叔丁醇和三氯甲烷对2,4-DCP降解的影响;
(b) EPR光谱比较;
(c)、(d)稳态模型计算·OH和·O2-的生成速率
综上分析,基于HA的引入能够梯级促进H2O2-Fe(III)体系羟基自由基生成,并进一步加速污染物的降解,主要机理表达如图6所示。配位阶段目标物降解速率较低,HA与Fe(III)的配位可以有效抑制Fe(III)的水解,显著降低HA-Fe(III)/Fe(II)的氧化还原电位,并增加了开路电势差(ΔV)。随着HA-Fe(III)配位化合物浓度进一步增加,反应进入了快速促进阶段。HA- Fe(III)会首先与H2O2反应生成·O2-,进一步加速HA-Fe(III)还原为HA-Fe(II),从而强化Fenton反应生成·OH并实现HA-Fe(III)/Fe(II)氧化还原循环。
图6 H2O2-HA-Fe(III)体系中加速目标物氧化降解机理
3结论与展望
在这项研究中,HA被引入H2O2-Fe(III)系统中,作为一种天然的配位剂,显著促进了2,4-DCP的降解。揭示了在H2O2-HA-Fe(III)体系中去除2,4-DCP的两个阶段的作用机理:(i)在配位阶段,配体形成并累积HA-Fe(III)配位化合物,能够有效抑制Fe(III)水解沉淀。(ii)在促进氧化还原阶段,具有较低氧化还原电位的HA-Fe(III)配位化合物可显著地加速HA-Fe(III)/Fe(II)的氧化还原循环,从而强化Fenton反应。但是关于HA和Fe(III)的配位位点的确定,不同配位位点与Fe(III)的结合速率差异,以及还原过程中关于超氧自由基作用机理等问题还需要进一步深入研究。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
影响污染物降解的生物因素可以大体从三方面分析下:一、有机物结构与生物可降解性生物降解有机物的难易程度与有机物的结构特征有很大的关系。首先,有机物生物降解的机理是:1、水中溶解的有机物能否扩散穿过细胞壁,是由分子的大小和溶解度决定的。目前认为低于12个碳原子的分子一般可以进入细胞。至
摘要:近年来,基于硫酸根自由基(SO4·-)的新型高级氧化技术研发及其在水污染控制和土壤修复方面的应用备受关注.锰基氧化物因其结构性质多变、自然丰度高、环境友好等优势,被广泛应用于活化过氧一硫酸盐(PMS)和过氧二硫酸盐(PDS)处理难降解有机污染物.
废水的可生化性(Biodegradability),也称废水的生物可降解性,即废水中有机污染物被生物降解的难易程度,是废水的重要特性之一。
化学氧化修复技术由于去除率高和周期短等特点被人们广泛应用于有机物污染的土壤修复工程,但是极少人会关注化学氧化修复在去除有机污染物的同时是否会对土壤本身或土壤中的重金属环境行为及其潜在环境风险造成影响,特别是针对采用先化学氧化修复有机污染物再利用稳定化修复技术稳定重金属污染物的有机
摘要:基于硫酸根自由基(sulfateradical,SO4-)氧化原理的活化过硫酸盐(persulfate,PS)氧化法是近年来高级氧化工艺(advancedoxidationprocess,AOP)的研究热点,以经济、高效、环境友好、安全稳定的优势在水处理、环境保护等领域开辟了新的思路。此前,学者们发现过硫酸盐高级氧化根据活化反应
好氧稳定塘:好氧稳定塘深度较浅,一般不超过0.5m,阳光能直接投入塘底,藻类生长茂盛,光合作用强,全部塘水呈好氧状态,由好氧微生物降解有机污染物及净化污水。BOD的去除率高,停留时间为2到6天时,可达到80%以上。稳定塘的废水处理机制稳定塘中富含各种细菌、真菌、微型动物、水生植物和其他类型的
英国政府11日发布了未来25年的环境保护规划,其中一项重要措施是推广塑料袋收费至所有零售业小商户中,推动全社会大幅减少使用一次性塑料制品,避免形成更多难以降解的塑料废品。这个长期规划中包括多项改善环境状况的措施,如保护野生动物栖息地、植树造林、减少使用一次性塑料制品等。根据这项规划,
保护湿地,首先必须守住8亿亩的湿地面积红线,权衡湿地保护与农业开发的关系,优化湿地空间格局,使湿地的生态功能得以最大发挥;第二要进行统一的湿地规划和优化管理,合理分配生产、生活与生态用水,建立湿地生态用水保障机制;第三要开展湿地生态保护与可持续利用,采取相应的管理思路和管理模式,进行全国湿地生态保护和修复工程的整体规划和设计。湿地生态系统与功能 “地球之肾”“生物超市”古老的人类多诞生于大江大河流域,人类文明的诞生、演化和传承都离不开湿地,人类的历史就是一部“择水而居、依水而兴”的
3月12日,中建四局环境科技有限公司在济南市历下区绿地国金中心正式揭牌。济南市历下区委书记杨传军,济南市历下区委常委、副区长赵冬梅,济南市历下区住建局党组书记、局长王鑫,济南市历下区投资促进局党组书记、局长孙鲁杰;中建山东总部市场部总经理高继贵,中建四局副总经理曾平,副总工程师、战
3月12日,中国能建葛洲坝生态环保公司党委书记、董事长杨贞武与北京碧水源科技股份有限公司党委书记、董事长黄江龙会谈,双方围绕水处理、水环境治理及海水淡化等领域合作深入交流,并达成共识。杨贞武对黄江龙一行到访表示欢迎。他表示,公司全面践行“四新”能建战略,聚焦“八网”融合,锚定“水、
3月11日,豹澥湖流域水环境综合治理工程(一期)四标段工程总承包(EPC)第一标段公开招标评标结果公示。中标候选人第一名:中冶南方工程技术有限公司,中国华西工程设计建设有限公司,投标报价:18528.02万元;中标候选人第二名:中交第二航务工程局有限公司,中煤科工集团武汉设计研究院有限公司,投
近日,中国水务所属山东区域总部接连中标两大水务工程项目,实现2025年度市场拓展的强势开局。荣成水务中标河北省肃宁县水环境综合整治PPP项目第三污水处理厂运营服务项目;青岛水务中禹管业中标德州市马颊河(津期店闸上段)综合治理工程(二期)建设项目。荣成水务此次中标河北省肃宁县水环境综合整
北极星环境修复网获悉,3月10日,四川省荥经县大熊猫栖息地水环境综合整治与农文旅融合发展EOD项目评审结果公示,荥经貊貊文化旅游集团有限公司为第一中标候选人,预中标该项目。荥经貊貊文化旅游集团有限公司实控人为荥经县财政局,成立于2022年9月,注册资本2亿元人民币。
2025年2月22日,博奇环保在昆泰嘉晟酒店成功召开2024年工作总结暨2025年经营管理工作部署会议。集团董事长、行政总裁曾之俊出席会议并发表重要讲话,会议由副总裁朱学佳主持,参会人员包括集团公司中高层领导、EPC与运维项目的双经理、特许项目管理团队以及控股子公司代表等共计116人。中国博奇2024年
2月28日,中冶生态环保(南京)有限公司揭牌活动在新区举行。中国中冶党委常委、副总裁朱广侠,市委常委、江北新区党工委书记陆卫东,中国中冶总裁助理、中冶生态环保党委书记、董事长范万柱,江北新区党工委委员、管委会副主任何金雪出席活动。中国中冶是隶属于中国五矿的特大型建筑央企,是中国钢铁
2024年7月18日,博天环境集团股份有限公司(以下简称“博天环境”)与合作方组成的联合体成功中标澳门路环污水处理厂项目,共同负责该项目的升级、营运及保养服务,营运期8年,合同金额达10.75亿澳元,并于2025年3月1日正式接管。此次项目的开展,不仅彰显了博天环境在环境治理领域的专业实力,更是在
据葛洲坝生态环保消息,2月26日,浙江省湖州市长兴县泗安镇人民政府与中国能建葛洲坝生态环保公司等单位签署南太湖流域泗安片区生态环境导向开发(EOD)模式项目投资合作协议。中国能建葛洲坝生态环保公司党委书记、董事长杨贞武与长兴县委副书记、县长姜华围绕水处理、土壤修复、高标准农田、新能源开
2025{会议通知}中国给水排水2025年污水处理厂提标改造(污水处理提质增效)高级研讨会(第九届)邀请函暨部分报告汇总同期召开中国给水排水2025年供水排水管网大会(水环境综合治理)同期召开中国给水排水2025年污水资源化利用(再生水利用)大会/园区污水提标及资源化利用大会请提前报名回执,限1500人;本次会
北极星水处理网获悉,2月24日,博罗县建工水环境治理有限公司成立,法定代表人为林志强,注册资本10000万人民币,由博罗县建工集团有限公司全资持股。实控人为博罗县国有资产事务中心。经营范围包括一般项目:雨水、微咸水及矿井水的收集处理及利用;生态恢复及生态保护服务;水环境污染防治服务;市政
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!