登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:为验证碳捕集、利用与封存(CCUS)技术在燃煤机组中的实际应用效果,在某电厂设计和建设了1套万吨级有机胺法碳捕集示范工程。通过技术比选,选定了有机胺吸收和压缩精制技术路线,并对工艺系统和主要设备选型进行了讨论。示范装置投运后,通过长时间运行试验,获得了吸收剂流量、烟气量、再生温度等因素对系统碳捕集效率、碳捕集量、蒸汽用量和电耗的影响规律,利用分析结果对碳捕集系统进行了运行优化,获得了最佳运行参数。结果表明,本装置在烟气流量6 000~7 000 m3/h,吸收剂循环流量3 400~3 700 kg/h,再生温度108.5~109.0 ℃时运行性能最好,其碳捕集效率可达90%,碳捕集量可达1.39 t/h,平均电耗为312 (kW·h)/t CO2,平均再生热耗为3.07 GJ/t CO2,能耗较传统30%单乙醇胺(MEA)吸收系统降低23%左右。最后探讨了碳捕集装置运行成本及其构成。研究结果可以为同类碳捕集装置的系统设计、设备选型及运行研究提供较为翔实的参考数据。
0 引言
近年来,气候变化成为公众关注的焦点问题。联合国政府间气候变化专门委员会2018年发布《IPCC全球升温1.5 ℃特别报告》表明人类活动带来的温室气体大量排放已经造成了全球气温较工业革命之前上升约1 ℃,若不加控制全球平均气温将在2030 —2052年提高1.5 ℃,这将给全球生态系统带来不可逆的重大影响[1]。在温室气体中CO2占比高达60%,因此进行CO2减排是控制温室效应最有效的手段,碳捕集、利用与封存(CCUS)技术是实现CO2减排的主要途径。CO2主要来自化石燃料的燃烧,当前全球85%的能源需要由化石燃料提供[2]。我国随着工业化进展的加快,已经超越美国成为全球碳排放第一大国。2019年全球碳排放401亿t,我国碳排放量超过100亿t,中电联《中国煤电清洁发展报告》(2016)指出我国电力行业碳排放占全国能源消耗产生碳排放总量的40%左右,全国单位火电碳排放强度约为822 g/(kW·h)[3]。2020年9月在第75届联合国大会一般性辩论上,我国提出“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”。“双碳”目标的提出对电力行业碳减排提出了更高的要求,这将导致我国能源结构的大幅调整。目前煤炭约占我国能源消费的58%,研究表明到2050年化石能源占比将下降至10%~15%,CCUS将是目前实现该部分化石能源净零排放的唯一技术选择,是碳中和目标下保持电力系统灵活性的主要手段[4,5]。
当前碳捕集技术总体仍处于研发和示范阶段,主要问题是投资和运行成本过高,长期地质封存的安全性和可靠性有待验证等。欧美等发达国家率先进行了CCUS技术研究,尤其是美国和加拿大已尝试开展大型CCUS工程示范[6]。我国碳捕集技术研究起步虽晚但进展较快,目前已建成十几个小规模碳捕集示范工程,多属于石化、化工和建材行业,发电行业较少[7]。
由于煤电机组排烟体积流量大、烟气中二氧化碳分压低、烟气成分复杂等原因,其碳捕集难度大、成本高[8]。目前,限制煤电机组碳捕集大规模应用的关键因素是其高昂的投资和运行成本[9]。本文针对燃煤电厂排烟,开展了万吨级碳捕集示范工程设计及运行优化研究,以尽量降低其投资和运行费用。
1 工艺路线论证
1.1 碳捕集技术分类
碳捕集技术可分为以整体煤气化联合循环(IGCC)为代表的燃烧前捕集、以富氧燃烧为代表的燃烧中捕集和以化学吸收法为代表的燃烧后捕集3种[10]。燃烧前捕集主要运用于IGCC系统中,该技术捕集系统小、能耗低,然而其投资成本太高且可靠性还有待提高,富氧燃烧面临的最大难题是制氧技术投资大、整体能耗高[11],这2种技术均仅适用于新建锅炉,而我国燃煤发电机组已基本饱和,此2种技术实施机会较小。
燃烧后捕集即在燃烧排放的烟气中捕集CO2,该技术对锅炉燃烧及发电主系统没有影响,既适用于新建机组也适用于老机组改造,应用范围广阔。燃烧后捕集也有多种,主要为溶剂吸收法、吸附法、膜分离法、生物法等[12,13,14,15,16,17]。其中,吸附法适用于原料气中CO2分压较高或温度较高且宜于进行压力或温度变换的场合,膜分离法和生物法目前处于试验阶段,技术尚不成熟。相较而言,化学溶剂吸收法已在化工行业应用几十年,技术最为成熟,应用也最为广泛。在化学吸收法中,有机胺由于具有较高的二氧化碳分离能力和较低的蒸发压,且成本低廉,可以循环利用等优势,已成为当前最常用的碳捕集吸收剂,目前已在大型煤电机组碳捕集工业装置中得到应用。
1.2 碳捕集技术路线选择
本工程依托的2台1 000 MW机组采用超超临界燃煤锅炉,故IGCC和富氧燃烧技术均不适合,只能采用后捕集技术。考虑到燃煤机组排烟中CO2体积分数低(8%~15%),故选择性低的物理吸收法选不适用。由于燃煤锅炉烟气流量大且近乎常压(0~200 Pa),若对烟气进行压力变换需要耗费巨大的能量,故不宜选用变压吸附法。由于本项目烟气经湿除后出口烟温为50~52 ℃,变温吸附技术由于变温能耗回收难和流化循环过程中吸附剂损耗过大也不宜使用。而膜分离法、低温蒸馏法和生物法还处于中小规模试验阶段,技术尚不成熟、成本较高,对本项目也不适用。考虑到电厂对装置运行可靠性要求较高,故选用技术成熟、分离效果好的化学吸收法。
化学吸收法中,有机胺和无机氨这2种吸收剂最为常用,新型的吸收剂如氨基酸盐、离子液体、非水吸收剂、相变吸收剂等也在开发过程中[18,19,20,21,22,23,24]。氨水法有再生效率低、氨逃逸率高的问题,会造成潜在的环境二次污染,故在碳捕集中应用不多。氨基酸盐再生困难、成本高,离子液体生产困难、价格高昂,非水吸收剂和相变吸收剂均存在吸收剂损耗率大的问题。鉴于电厂对项目的运行安全性要求较高,故本项目选用了对二氧化碳选择性强、性能稳定、技术成熟的有机胺法。有机胺也有多种,包括一级胺、二级胺、三级胺和空间位阻胺等,不同胺与二氧化碳的反应机理不尽相同,其反应热、反应速率也各不相同。传统的第1代吸收剂是以30%的单乙醇胺(MEA)为代表,其具有吸收效率高、反应速率快的优点,但缺点是易降解、易氧化且腐蚀性强。因此,本文考虑选用改进的第2代吸收剂,是由多种有机胺复配而成的水基吸收剂并添加抗氧化剂和缓蚀剂,其再生能耗低、酸气负荷大、损耗低、寿命长。
本示范项目所在地处于内陆,附近无油田,无法将捕集到的产品CO2用于驱油,也无合适的地下咸水层或矿井可用于封存,故产品考虑回用。鉴于项目所在地经济发达,食品级二氧化碳的需求量大,考虑将产品提纯至食品级以提高其利用价值。根据类似工程经验,通过中压压缩、吸附、液化和精馏,即可获得高纯度的二氧化碳。
根据以上分析,本项目确定总体技术路线为有机胺捕集+压缩精制,整体技术包含4个操作单元:烟气预处理单元、有机胺捕集单元、压缩精制单元和产品储存供应单元,如图1所示。烟气预处理单元是对原料气所含的微尘和少量强酸性气体进行处理,以减少其对吸收剂造成的危害;捕集单元是通过吸收再生过程实现烟气中的CO2分离;压缩精制单元是通过压缩、吸附、冷却液化和精馏提纯技术进一步提高CO2纯度,以满足食品级标准要求;产品储存供应单元是将液化后的CO2储存、制成干冰及装车外运。
2 万吨级示范工程设计
2.1 设计条件
依托江苏华电某电厂二期2×1 000 MW扩建工程,建设1套碳捕集量为10 000 t/a的碳捕集示范装置,产品原按食品级液体二氧化碳设计,后考虑到产品多元化需求增加了干冰制备装置。原料气来自二期#3,#4燃煤机组湿式电除尘器出口,污染物已达超低排放标准,烟气主要组分见表1。表中BMCR为锅炉最大连续蒸发量,THA为机组的热耗率验收工况。
2.2 工艺流程
碳捕集示范工程捕集部分工艺流程如图2所示。锅炉排放的烟气经脱硝、电除尘、脱硫和湿式电除尘后进入碳捕集装置的深度净化塔,在塔内经洗涤降温和深度脱硫后,由引风机送入吸收塔底部入口。吸收塔内烟气中的CO2被来自塔顶的贫液吸收,经洗涤冷却后的净烟气自塔顶排空。吸收CO2后的富液由塔底经泵送入贫富液换热器,回收热量后送入再生塔。富液在再生塔内通过汽提解吸部分CO2,然后进入溶液煮沸器,在蒸汽加热下使其中的CO2进一步解吸。解吸出的CO2连同水蒸气从再生塔顶排出,经冷却分水后得到纯度95%(湿基)以上的产品——粗CO2气,随后被送入后续压缩精制工段。解吸CO2后的贫液自再生塔底流出,经贫富液换热器换热降温后,用泵送至贫液冷却器冷却后返回吸收塔。再生气冷凝分离出的液体经地下槽收集后再送入再生塔,返回到吸收剂循环系统。由此,吸收剂往返循环构成连续吸收和解吸CO2的工艺过程。在预处理阶段,本项目将深度净化塔系统排出的废水送至脱硫制浆系统回用于制浆,最终用于SO2脱除,既减少了废水排放量,又可以充分回用废水中的剩余碱性。
图2碳捕集示范工程捕集部分工艺流程
Fig.2Process of the carbon capture section in the carbon capture demonstration project
碳捕集示范工程压缩精制部分工艺流程如图3所示。粗CO2气经缓冲后进入CO2压缩机,压缩到约2.5 MPa并预冷后进入吸附器,脱除含硫组分和其他杂质,随后再进入干燥器进行深度脱水。然后进入冷凝器,在2.0 MPa、-18~-20 ℃条件下液化,之后进入提纯塔精馏提纯,再经后冷器降温后进入产品罐储存,最后可由装车泵装车外运。液体二氧化碳也可由干冰机制成干冰后装箱回用。预冷、液化、提纯和后冷等所需冷源由制冷机提供。
图3碳捕集示范工程压缩精制部分工艺流程
Fig.3Compression and purification process of the carbon capture demonstration project
2.3 主要设备选型优化
(1)深度净化塔:1座,选用填料塔,根据处理烟气量和洗涤要求,采用圆柱塔型。考虑到湿烟气及深度净化塔洗涤液的腐蚀性,填料选用增强塑料散堆填料,塔体内部设防腐层,塔内件选用不锈钢材料。
(2)吸收塔:1座,采用圆柱填料塔。考虑到吸收液的腐蚀性,塔体按碳钢设计,内设防腐层。塔内设3段塑料散堆填料,其中2段用于吸收,1段用于尾气洗涤。
(3)再生塔:1座,采用圆柱填料塔。考虑运行温度,塔体按不锈钢设计,内设不锈钢塔盘2片,不锈钢孔板波纹规整填料2段。塔下设立式溶液煮沸器1座。
(4)提纯塔:1座,新型复合填料塔,圆柱形。塔顶设冷凝器,塔中段设2段不锈钢丝网规整填料,下部为储液区。考虑到检修方便,再沸器与提纯塔分体设置。
(5)产品罐:2台,立式双层真空保冷储罐,主材碳钢,每罐容积80 m3,满足液态二氧化碳3 d的储存要求。
(6)引风机:1台,离心式。由于湿烟气具有较强的酸腐蚀性,风机叶轮及壳体等与烟气接触部分的材质采用316L。考虑到锅炉排烟中CO2的体积分数随机组负荷变化波动较大,引风机按变频设计,配套变频器以便及时调节系统烟气量。
(7)压缩机:1台。小型二氧化碳压缩机有活塞式、螺杆式2种。螺杆式压缩机在运行时需要喷油,虽然其有油过滤器等除油设施,但本项目所需产品纯度要求较高,为防止油对二氧化碳的污染,故选用了气缸与填料无油润滑的活塞式压缩机,气缸带不锈钢缸套以防止腐蚀。设备形式为L型两列三缸水冷无油润滑往复活塞式,排气压力2.5 MPa。
(8)制冷机:1台。考虑到环保需要,工质选用对大气臭氧层无污染的环保型多元共沸R404a制冷剂,制冷压缩机为螺杆式,机组配有储液器、冷凝器、油分离器及电控柜等辅助设置。
(9)冷换系统:1套。贫富液换热器、贫液冷却器、洗涤液冷却器等选用板式换热器,板片选用高效板型以提高换热效率,主材为不锈钢。溶液煮沸器、再生气冷却器、再沸器、液化器、预冷器、后冷器等则选用管壳式换热器,并根据工作条件选用合理的材质。为安全起见,换热器设计余量取20%以上。
(10)泵类:间断运行的加碱泵和废水泵各设1台,经常运行的泵均按1用1备设置,并根据工作介质的不同选用不同材质。装车泵选用屏蔽泵,其他泵均为离心泵。
(11)干冰机:2台,考虑到干冰的制备可以独立于液态二氧化碳生产,每台机产量按500 kg/h设计。干冰机所排废气分为2路,一路排空,一路接入二氧化碳精制系统。在正常情况下,考虑回收干冰机所排二氧化碳气体,以便循环利用。
2.4 设备布置优化
碳捕集装置与二期扩建主体工程协同设计,在合理位置预留碳捕集装置布置空间,碳捕集所需外部连接管路、电缆桥架等均依托主厂管架或管沟敷设。碳捕集区域内部根据功能不同,将整体装置分为3个区域布置,分别为电控间、主装置区和产品区。主装置区位于中间,布置有捕集及压缩精制主要工艺设备,设工艺楼1座,设备分层布置,并在2层预留了新技术开发及试验平台所需空间。产品区主要布置有产品罐、装车泵及干冰车间等。各区之间路面硬化,并设环形道路便于设备检修和人员通行。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月8日,陇东至山东±800千伏特高压直流工程竣工投产大会举行。甘肃省委书记、省人大常委会主任胡昌升,山东省委书记、省人大常委会主任林武出席;甘肃省委副书记、省长任振鹤,山东省委副书记、省长周乃翔,国家电网公司董事长、党组书记张智刚,中国华能集团有限公司董事长、党组书记温枢刚讲话;国
我国提出碳达峰碳中和目标,不仅是对全球的庄严承诺,更是顺应时代潮流的战略选择。这标志着绿色低碳的现代化路径正在拓宽。实现“双碳”目标挑战巨大。我国碳排放总量大,产业结构偏重、能源结构以煤为主,而且留给我们实现碳中和的时间远少于发达国家。但是,这也为我国提供了发展新技术、推动高质量
构建新型电力系统的重要任务对煤电提出了“新一代煤电升级行动”的新要求,煤电技术正加速向“清洁低碳、高效调节、快速变负荷、启停调峰”方向转型。“新一代煤电”一方面要求煤电机组高效调节能力进一步提升,更好地发挥煤电的电力供应保障作用,促进新能源消纳;另一方面要求煤电探索零碳或低碳燃料
4月21日,国家能源集团召开2025年一季度工作会暨提质增效动员部署会,这也是邹磊履新后召开的第一个周期性工作会议。此次会议指出,国家能源集团要实现从“大而全”到“强而优”的转变,这也是国家能源集团重组7年半来对自身的一次重大审视和战略转向。重组巨擘诞生:从“合并”到“第一”的跨越2017年
4月30日7时10分,华能正宁电厂2台100万千瓦调峰煤电项目2号机组圆满完成168小时连续满负荷试运行考核。试运期间各项性能、环保指标达到或优于设计值,至此,项目两台机组实现全容量投入商业运营。华能正宁电厂2台100万千瓦调峰煤电项目,是华能陇东多能互补综合能源基地的重要组成部分,是“陇电入鲁”
4月27日,吉林油田举办新闻发布会,吉林石化—吉林油田二氧化碳管道工程(一期)27日在吉林省松原市启动。该管道设计总长约400公里,建成后预计每年可在地下封存二氧化碳量超过400万吨。据介绍,该管道是目前中国运输距离最长、管径最粗、压力最高、规模最大的二氧化碳管道,采用超临界/密相(一种特殊的
在能源电力供需格局持续演变的新形势下,电力行业的高质量发展面临诸多挑战。作为我国“西电东送”的主力军,云南省秉持资源经济与能源产业“一盘棋”的战略布局,加速推进能源全产业链建设,为绿色能源强省建设提供支撑。双轮驱动破解“三缺”矛盾记者在云南多地调研时发现,缺电、弃电和调节能力不足
北极星电力网获悉,近日,新疆油田公司2×660兆瓦超超临界煤电项目主厂房混凝土开始浇筑,标志着新疆油田首个也是目前中国石油最大在建煤电工程进入实质性建设阶段。据悉,该项目位于克拉玛依市白碱滩区,是中国石油最大的“新能源+煤电+CCUS”一体化项目,总体规模为“400万千瓦新能源+2×660兆瓦超超
4月21日至23日,第二十六届中国环博会在上海新国际博览中心隆重举办。作为亚洲环保领域的旗舰盛会,本届展会规模空前,吸引了来自22个国家和地区的2000多家企业参展。同兴科技及子公司北京方信立华携多项核心技术和产品亮相展会,包括烟气治理环保工程总承包解决方案、低温SCR脱硝催化剂、CCUS(二氧化
您了解“双碳吗”?,关于“双碳”名词有很多很多,看看您见过的还有哪些,欢迎评论留言,共同探讨新名词。一、政策与目标类1.双碳碳达峰指国家或地区在某一年度二氧化碳排放量达到历史最高值后逐步下降,标志着经济增长与碳排放脱钩。中国承诺在2030年前实现碳达峰。碳中和指通过植树造林、碳捕集等技
4月21日,邯郸市生态环境局关于印发《2025年全市生态环境工作要点》的通知,通知指出,扎实推进塑料污染治理,积极推进退役风电叶片、光伏组件等新型废弃物循环利用。原文如下:邯环〔2025〕1号邯郸市生态环境局关于印发《2025年全市生态环境工作要点》的通知各县(市、区)分局,局机关各科室、局属各
国家电网8日在济南、兰州同时宣布,陇东—山东±800千伏特高压直流工程竣工投产,标志着我国首个“风光火储一体化”大型综合能源基地外送工程建成投运。这条特高压输送的电能超一半是风能、光伏、储能等纯绿色电能。陇东—山东工程,是我国又一条“西电东送”能源大动脉,起于甘肃庆阳,止于山东泰安,
我国提出碳达峰碳中和目标,不仅是对全球的庄严承诺,更是顺应时代潮流的战略选择。这标志着绿色低碳的现代化路径正在拓宽。实现“双碳”目标挑战巨大。我国碳排放总量大,产业结构偏重、能源结构以煤为主,而且留给我们实现碳中和的时间远少于发达国家。但是,这也为我国提供了发展新技术、推动高质量
北极星储能网获悉,5月7日,内蒙古自治区工业和信息化厅发布关于征集2025年度工业和信息化领域节能降碳技术装备的通知,征集范围包括高效储能、工业绿色微电网等可再生能源消纳技术。原文如下:关于征集2025年度工业和信息化领域节能降碳技术装备的通知各盟市工业和信息化局,有关科研单位院所、行业协
构建新型电力系统的重要任务对煤电提出了“新一代煤电升级行动”的新要求,煤电技术正加速向“清洁低碳、高效调节、快速变负荷、启停调峰”方向转型。“新一代煤电”一方面要求煤电机组高效调节能力进一步提升,更好地发挥煤电的电力供应保障作用,促进新能源消纳;另一方面要求煤电探索零碳或低碳燃料
5月6日,深圳市工业和信息化局发布《市工业和信息化局关于征集2025年度国家工业和信息化领域节能降碳技术装备的通知》,征集范围包括重点行业领域节能降碳技术、用能低碳转型技术、工业减碳技术、数字化绿色化协同转型技术、高效节能装备等。全文如下:市工业和信息化局关于征集2025年度国家工业和信息
4月21日,国家能源集团召开2025年一季度工作会暨提质增效动员部署会,这也是邹磊履新后召开的第一个周期性工作会议。此次会议指出,国家能源集团要实现从“大而全”到“强而优”的转变,这也是国家能源集团重组7年半来对自身的一次重大审视和战略转向。重组巨擘诞生:从“合并”到“第一”的跨越2017年
4月30日7时10分,华能正宁电厂2台100万千瓦调峰煤电项目2号机组圆满完成168小时连续满负荷试运行考核。试运期间各项性能、环保指标达到或优于设计值,至此,项目两台机组实现全容量投入商业运营。华能正宁电厂2台100万千瓦调峰煤电项目,是华能陇东多能互补综合能源基地的重要组成部分,是“陇电入鲁”
4月27日,吉林油田举办新闻发布会,吉林石化—吉林油田二氧化碳管道工程(一期)27日在吉林省松原市启动。该管道设计总长约400公里,建成后预计每年可在地下封存二氧化碳量超过400万吨。据介绍,该管道是目前中国运输距离最长、管径最粗、压力最高、规模最大的二氧化碳管道,采用超临界/密相(一种特殊的
在能源电力供需格局持续演变的新形势下,电力行业的高质量发展面临诸多挑战。作为我国“西电东送”的主力军,云南省秉持资源经济与能源产业“一盘棋”的战略布局,加速推进能源全产业链建设,为绿色能源强省建设提供支撑。双轮驱动破解“三缺”矛盾记者在云南多地调研时发现,缺电、弃电和调节能力不足
为加快推广节能降碳先进技术,加强重点行业领域技术改造升级和大规模设备更新,现组织开展2025年度工业和信息化领域节能降碳技术装备推荐工作。以支撑实现碳达峰碳中和为导向,择优推荐节能降碳效果明显、技术成熟可靠、具备经济效益和推广潜力,能够实现全流程系统节能降碳或跨行业、领域融合创新的技
4月28日,工信部发布组织开展2025年度国家工业和信息化领域节能降碳技术装备推荐工作的通知,推荐范围有五大方面,其中用能低碳转型技术包括清洁低碳氢制备及应用、高效储能、工业绿色微电网等可再生能源消纳技术;余热余压高效利用、系统能量梯级利用、电能替代等多能高效互补技术等。原文如下:工业
北极星储能网获悉,近日,南网储能公司储能科研院20MW/40MWh级钠离子电池储能系统示范工程并网性能测试服务、应对碳关税壁垒的新型储能产品碳足迹监测溯源技术及碳抵消策略研究招标公告发布,(项目编号:CG0200022002032266)。本招标项目南网储能公司储能科研院20MW/40MWh级钠离子电池储能系统示范工
5月8日,在2025年德国慕尼黑智慧能源展览会(ThesmarterEEurope)期间,远景科技集团面向全球发布《2025零碳行动报告》(下称《报告》),宣布自2022年起连续第三年实现运营碳中和,并于2024年成功实现100%可再生电力使用,提前一年达成RE100承诺,彰显出其在绿色能源转型领域的卓越领导力与高效执行力
我国碳市场建设的困境与优化路径来源:中能传媒研究院作者:封红丽1沈春雷1姜海东1朱婧1袁甜1朱晔2(1.国网(北京)综合能源规划设计研究院2.上海置信能源综合服务有限公司)碳市场作为应对气候变化的重要政策工具,通过市场机制推动温室气体减排,已成为全球绿色低碳转型的核心手段。近年来,我国碳市
北极星氢能网获悉,5月6日,由陕西化建承建的内蒙古金风绿能化工(兴安盟)有限公司绿氢制50万吨绿色甲醇项目(一期25万吨)气化装置首台转化炉在框架内安装就位,此次1#转化炉的成功吊装,为后续工程打下了坚实的基础。此次吊装的转化炉作为项目汽化装置的重要设备之一,单体重150余吨,安装标高27米
北极星氢能网获悉,5月10日,贵州六盘水氢能示范应用暨美锦华宇煤焦氢二期点火烘炉仪式将在六枝特区盛大举行。届时,西南地区首列氢燃料电池火车头、100辆氢能重卡以及4辆氢能公交车将集体亮相,并陆续投入运营。这些氢能交通工具所使用的氢气,主要源自贵州美锦华宇“煤—焦—氢”综合利用示范项目产
CBC2025第八届中国(国际)生物质能大会议程产业背景当前,我国生物质能产业正迎来重要发展机遇。产业规模持续扩大,大型央企与地方国企的加入为行业注入新活力,推动产业走向规模化、专业化发展。2024年6月24日,国家发展改革委、国家能源局《煤电低碳化改造建设行动方案(2024—2027年)》,其中提到:利
北极星氢能网获悉,5月8日,三峡集团云南能源投资有限公司发布基于绿氢零碳生活圈研究及示范运用项目招标公告,公告显示,该项目位于云南丽江,以丽江金山绿氢零碳智慧工厂为基础,为拓展氢能应用场景为主要目的,通过开发基于绿氢的零碳生活圈,一是开发基于绿氢的零碳数字化智慧文旅小镇,打造“氢能
万物逐绿,春风报喜。在南方五省区,绿色低碳技术加快应用,近零碳建筑焕然一新,绿色发展图景欣欣向荣。今年《政府工作报告》提出,“积极稳妥推进碳达峰碳中和”“建立一批零碳园区、零碳工厂”。近年来,南方电网公司持续提升清洁能源消纳水平和能源利用效率,因地制宜打造近零碳示范区,初步形成评
5月8日,中国能建中电工程所属企业参与设计等工作的陇东—山东±800千伏特高压直流工程竣工投产,标志着我国首个“风光火储一体化”大型综合能源基地外送工程建成投运。该工程年输送电量超360亿千瓦时,其中绿电占比达50%,输送的直流电从甘肃庆阳换流站起,经过915千米的线路运输,抵达位于山东泰安东
5月7日,500千伏梅州抽水蓄能电站二期接入系统工程第一阶段启动成功。本阶段投产的梅蓄二期至承龙开关站单回500千伏线路和梅蓄一期至梅蓄二期联络线作为接入工程的主体部分,将为梅蓄二期早日并网投产提供充足的电源支撑,畅通向粤港澳大湾区能源输送的“电源动脉”。据介绍,项目新建线路长度2.17千米
日前,内蒙古自治区碳达峰试点(康巴什区)实施方案发布。根据方案,通过3年创建,达到以下要求:确保康巴什区率先实现碳达峰目标,2023年康巴什区绿色低碳发展取得明显成效,碳排放增长趋势减缓;到2025年康巴什区单位GDP能耗下降率、单位GDP碳排放下降率均超额完成市政府下达目标任务,先行先试推进
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!