北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复场地修复评论正文

上海市某大型再开发场地土壤重金属污染特征、评价及来源分析

2021-08-23 09:29来源:《水土保持通报》作者:陈展 吴育林 张刚关键词:重金属污染土壤重金属污染生态风险评价收藏点赞

投稿

我要投稿
2.3 土壤重金属生态风险评价

场地土壤潜在生态风险指数如图2b,2b’所示,表层土壤处于中等风险和轻微风险水平面积占研究区域面积的46.49%和47.19%,个别区域呈较高风险、高风险和极高风险水平,分布在场地中部和北部的机场租用地、工业用地和南部的居住用地区域,主要受表层个别点位As,Pb和Hg较高风险水平(RIj)影响。下层土壤处于轻微风险水平面积占研究区域面积86.2%,个别区域呈现中等风险和较高风险水平,主要受下层个别点位As,Pb,Zn和Hg较高风险水平(RIj)影响。

计算重金属(As,Cu,Pb,Ni,Zn,Cr和Hg)的潜在生态风险指数,考虑潜在生物毒性后,表层土壤重金属的潜在生态风险指数均值(Ei)由大到小依次为Hg(68.76)>As(7.18)>Pb(4.37)>Cu(4.33)>Ni(3.65)>Zn(0.91)>Cr(0.69),下层土壤重金属的潜在生态风险指数均值(Ei)依次为Hg(38.96)>As(6.82)>Pb(4.08)>Ni(3.95)>Cu(3.79)>Zn(0.87)>Cr(0.72),其中表层土壤中Hg处于中等风险水平,为研究区域主要的生态风险因子,其余重金属均处于轻微风险水平。

分别计算各采样点重金属(As,Cu,Pb,Ni,Zn,Cr和Hg)的综合潜在生态风险指数(RIj),表层土壤的综合潜在生态风险指数(RIj)处于轻微、中等、较高和极高4种水平,对应采样点占比分别为62.75%,24.51%,11.76%和0.98%;下层土壤综合潜在生态风险指数(RIj)处于轻微、中等和较高3种水平,对应采样点占比分别为83.33%,11.77%和4.90%,主要集中于轻微风险水平。表层土壤综合潜在生态风险指数均值(RI)为89.91,处于中等风险水平,下层土壤综合潜在生态风险指数均值(RI)为59.20,处于轻微风险水平。

2.4 土壤重金属污染来源解析

2.4.1 相关分析 除Ni外,其余重金属均不满足正态分布,为分析重金属来源之间的相关关系,计算各重金属元素间的Spearman相关系数。

表层土壤中Be-Ni-TI-Cr,Pb-Zn-Cu呈显著正相关关系,其相关系数分别为0.444~0.814(p<0.01)和0.693~0.790(p<0.01),其中Cu-Pb,Cu-Zn和Ni-Cr相关系数在0.7以上(p<0.01),表现较高的来源相似性。Be-Ni-TI-Cr变异系数(11.96%~14.98%)较Pb-Zn-Cu(25.15%~37.39%)小,且均未超过土壤元素背景值,说明其受共同的自然来源影响;Pb-Zn-Cu部分点位浓度超过土壤元素背景值,说明其污染来源的相似性。As与Cu,Pb,Zn和Cr均有一定程度的正相关关系,与Cu的相关关系较高,说明其来源受人类活动和自然因素的共同影响,主要以人类活动来源为主。Hg与Cu,Pb和Zn有一定的显著正相关关系,与Be,Ni,TI和Cr呈现一定的显著负相关关系,与As相关关系不大,说明其与Cu,Pb和Zn污染具有一定的同源性。

下层土壤重金属的相关性与表层土壤基本一致,其中Cu-Pb,Cu-Zn和Ni-Cr相关系数达到0.85以上(p<0.01);除As-Be外,As,Pb,Zn,Cu,Be,Ni,TI,Cr两两之间均呈现一定的显著正相关关系,其中Pb,Cu与Cr,TI之间相关系数达0.5以上(p<0.01),说明下层土壤重金属来源的相似性受自然因素影响相对较大。Hg与As,Cu,Pb和Zn有一定的显著正相关关系,与Be,Ni,TI和Cr无明显相关关系,说明下层Hg与As,Cu,Pb和Zn污染来源的相似性,表层和下层Hg与其余重金属元素的相关关系差异说明其来源的复杂性。

为分析土壤重金属向下迁移情况,计算各重金属表层和下层样品浓度的相关系数,仅Be,Cu,Pb和Zn表层和下层浓度呈现一定的显著正相关关系,相关系数相对较小,分别为Be(0.280,p<0.05),Cu(0.280,p<0.05),Pb(0.308,p<0.05)和Zn(0.403,p<0.05)。此外,土壤中Be的变异系数(表层11.96%/下层11.13%)较小,表层和下层相近,说明其主要受自然源影响,空间异质性相对较小;Cu,Pb和Zn的变异系数(37.39%/39.89%,25.15%/20.05%,29.16%/41.06%)较大,且下层土壤中Cu和Zn变异系数高于表层,说明下层土壤中Cu,Pb和Zn受表层土壤重金属向下迁移来源影响的程度有限,其多数分布区域的空间变异性更多受到人类活动源的直接影响,与前述重金属污染评价结果和表层和下层污染分布并不完全相同的情况基本一致。

2.4.2 聚类分析与主成分分析 为进一步分析场地土壤中重金属来源情况,对土壤重金属(As,Be,Cu,Pb,Ni,TI,Zn,Cr和Hg)浓度进行聚类分析和主成分分析(PCA)。采用分层聚类方法,并选用组间连接法,距离测量采用平方欧式距离,聚类结果分为5类(图3):①下层土壤中的Ni-Cr-Be-Pb-TI;②下层土壤中的Zn-Hg-Cu;③表层土壤中的Pb-Zn-Cu和下层土壤中的As;④表层土壤中的Ni-Cr-Be-TI-As;⑤表层土壤中的Hg。

对研究区域土壤样品中重金属浓度进行KMO检验和Bartleet’s球形度检验,表层和下层KMO统计量为0.678>0.6,p<0.01,满足主成分分析要求,根据特征值大于1原则[32],提取前5个主成分方差累计贡献率达到75.25%,表明该主成分能够在较大程度上表征土壤中重金属的来源信息(见表3)。

表3 土壤重金属浓度主成分分析载荷矩阵

13.jpg

注:①“_1”和“_2”分别表示表层土壤与下层土壤;②提取方法为主成分分析法;③旋转方法为方差最大法。

主成分1(PC1)的方差贡献为26.09%,下层土壤中Ni,Cr,Be和TI载荷分别为0.960,0.919,0.813,0.704,属于强载荷(>0.6)[20],其浓度均低于土壤背景值,正相关关系显著,变异系数较小,说明PC1反映下层土壤重金属受自然来源影响,与已有研究[25,33-35]一致,TI浓度主要受成土母质来源影响[33],Be为典型的亲岩元素[34],Cr和Ni是中国城市土壤污染程度最低的重金属之一,农业活动中化肥农药使用对土壤中Cr和Ni浓度影响小于土壤本底影响[16,35],李春芳等[35]对龙口市污水灌溉农田重金属来源分析研究表明土壤中Cr和Ni浓度主要受成土母质影响,污水灌溉对其在土壤中的富集影响较小。此外,下层土壤中Pb在PC1上也有一定载荷(0.51),且聚类分析结果Ni-Cr-Be-Pb-TI为一类(图3),说明PC1也反映了部分下层土壤中Pb的自然源影响,与相关性分析结果,以及下层土壤中Pb的浓度分布情况(图1a1)一致。

14.jpg

注:_1为表层土壤,_2为下层土壤。

图3 研究区域土壤重金属浓度聚类分析

主成分2(PC2)的方差贡献为19.26%,表层土壤中的Ni,Cr,Be和TI载荷较高,分别为0.934,0.844,0.825,0.675。其浓度均低于土壤背景值,正相关关系显著,变异系数较小,说明PC2反映表层土壤重金属受成土母质影响的自然来源。此外,表层土壤中As在PC2载荷(0.486)与PC4上的载荷(0.343)相当,可认为有两种主成分来源[36],PC2也反映了部分表层土壤中As的自然来源。

主成分3(PC3)的方差贡献为11.87%,下层土壤中Zn,Hg和Pb载荷较高,分别为0.886,0.827,0.736,正相关关系显著,变异系数较大,且部分土壤样品浓度超过背景值,说明PC3反映下层土壤重金属的人为活动影响源。此外,而下层土壤样品多为受人为活动干扰较小的粉质黏土,土壤中Pb,Zn和Hg相对高浓度区在场地中部有较多分布,与表层土壤重金属分布并不一致(图1a,1a1,1c,1c1,1e,1e1),该区域历史上作为农村宅基地和农田,农业活动中的污水灌溉、畜禽粪便、农药化肥使用可在一定程度上造成土壤中的Zn,Pb和Hg的累积[8,24,34],说明PC3更多反映受场地内部早期农业生产活动的影响源,重金属早期出现累积,并通过淋溶下迁和上部填土厚度的不断增加而逐渐在下层粉质黏土层的上部聚集。

主成分4(PC4)的方差贡献为11.61%,表层土壤中的Pb,Zn和Cu载荷较高,分别为0.870,0.856,0.709,部分土壤样品中重金属浓度超过背景值,变异系数较大,说明PC4反映表层土壤重金属的人类活动影响源。表层土壤中的Pb,Cu,Zn相对高浓度区主要分布在场地内西侧工业用地(物流货运企业)和机场租用地(停车场)(图1a—1c,1a1—1c1),场地外西侧为市政道路和机场跑道,交通流量较高,表层土壤中重金属可能受场地内交通源排放和场外交通源的大气沉降叠加影响。已有研究表明Zn和Pb可作为交通污染源的示踪物质[16,20-21],其中汽车尾气排放是Pb污染重要来源[16,31,37],作为轮胎生产中重要的添加剂Zn主要来源于汽车轮胎磨损,Cu常用于制造车辆制动系统与散热器,来源于汽车制动过程中的摩擦,也可看做交通污染源的标示[20,36-38],说明PC4反映的是土壤重金属的交通运输来源。此外,下层土壤中As在PC3上的载荷(0.484)与PC4上的载荷载荷(0.543)相当,聚类分析结果下层土壤中As与表层土壤中Pb-Zn-Cu为一类(图3),且场地西侧下层土壤中As相对高浓度分布区域(图1d1)与表层土壤中的Pb,Zn和Cu相对高浓度分布区一致(图1a—1c),次高浓度区域在场地中部有较大面积分布,说明下层土壤中As受场地内外交通运输源和场地内部早期农业生产源共同影响。

主成分5(PC5)方差贡献为6.42%,仅下层Cu的载荷较高(0.698),且下层土壤中Cu在PC3上也有一定载荷(0.464),聚类分析结果Zn-Hg-Cu为一类(图3)。下层部分土壤样品中Cu浓度超过背景值,且与受场地早期农业活动源影响为主的Zn,Hg,Pb(PC3)和自然来源为主的Ni,Cr,Be和TI(PC1)正相关关系显著,孙云厚等[39]在新疆东天山某铜矿区土壤重金属污染评价研究中发现土壤中的Cu受采矿活动和成土母质风化作用的共同影响。该场地下层土壤中Cu相对高浓度区域较小,零星分布在北侧和东南侧边缘,其余区域Cu浓度相对较低(图1b1),说明下层土壤中Cu受农业活动的人为源和成土母质风化作用自然源的共同影响。

汞是唯一主要以气相形式存在于大气中的重金属[40],其长距离传输能力较强,来源十分广泛,除受含汞废水与固体废物直接向土壤中排放和成土母质风化作用影响外,化石燃料燃烧、垃圾焚烧和水泥制造等人为活动源均可向大气释放汞,并通过干湿沉降作用在表层土壤中不断富集[41-42]。

研究区表层土壤样品中Hg浓度超过背景值比例较Pb,Zn和Cu高,且变异系数较大,除场地西侧个别相对高浓度点Hg与As和Pb受共同污染源影响外(图1e,d,a),其余Hg相对高浓度与次高浓度区在场地内的工业用地、居住用地和机场租用地均有较大面积分布(图1e)。聚类分析结果表层土壤中的Hg自成一类(图3),且仅在PC4上有一定正载荷(0.451),表层土壤中的Hg与Pb,Zn,Cu有一定的正相关关系,与主要受成土母质风化作用影响的Ni,Cr,Be和TI呈负相关关系,相关程度均较低,与As基本无相关关系。说明除与表层土壤中的Pb,Zn,Cu有着相似来源的交通运输源对其有一定贡献外,表层土壤中的Hg浓度更多受到其他人类活动源的影响。

3 结 论

(1) 研究区域重金属均未超过土壤污染风险筛选值,6.9%,24.5%,25.5%,37.3%和63.7%的采样点土壤样品中As,Cu,Pb,Zn和Hg浓度超过土壤元素背景值,呈高累积污染状态。内梅罗指数评价结果显示场地土壤整体处于尚清洁到轻度污染状态,但仍有11.8%和3.84%的区域表层土壤呈中度污染和重度污染状态,2.64%和0.63%的区域下层土壤呈中度污染和重度污染状态。

(2) 表层土壤重金属的潜在生态风险依次为Hg>As>Pb>Cu>Ni>Zn>Cr,下层土壤重金属的潜在生态风险依次为Hg>As>Pb>Ni>Cu>Zn>Cr。其中表层土壤中Hg处于中等风险水平,为研究区域主要的生态风险因子。表层土壤处于轻微风险和中等风险水平面积占比分别为62.75%和24.51%,综合潜在生态风险指数均值为89.91,处于中等风险水平;下层土壤处于轻微风险水平面积占比为83.33%,综合潜在生态风险指数均值为59.20,处于轻微风险水平。

(3) 研究区域土壤中Ni,Cr,Be和TI主要受成土母质风化作用的自然源影响,土壤中的Pb,Zn,Cu,As和Hg主要受场地及邻近区域交通运输和场地早期农业生产活动等人类活动源影响,其中表层土壤中的As与下层土壤中Cu的自然源与人为源贡献相当,表层土壤中Hg来源复杂,更多受到除交通运输源以外的其他人类活动源影响。

综上所述,历史农业生产、交通运输和用地变迁活动引起本研究区域表层和下层土壤中的部分重金属累积,并分别表现中等和轻微的生态风险,Hg作为主要生态风险因子应引起高度关注,此外,后续土地利用过程中还应关注外部交通污染源对该区域土壤中的Pb,Zn和Cu的累积效应和生态影响。

投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

重金属污染查看更多>土壤重金属污染查看更多>生态风险评价查看更多>