登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
盐差能是指2种含盐浓度不同的溶液之间的化学电位差能,广泛存在于海水与河水间,是一种重要的海洋蓝色能源。当今膜市场的快速发展以及对可再生能源日益增长的需求,推动着盐差能转换技术的发展,有效地利用盐差能可以在产电的同时降低浓海水的盐度。
随着海水淡化技术的日渐成熟,海水淡化产业的规模不断扩大,副产物浓海水的产量也在不断增大。淡化后副产的浓海水浓度高于海水浓度,约为正常海水浓度的2倍,从环保方面考虑,若将其直接排放会对现有的海洋生态环境造成威胁。
因此,需要寻求合适的方法对其进行处理。浓海水和河水之间的浓度差为反电渗析(Reverse Electrodialysis,RED)产电提供了可能。通过反电渗析处理不仅可以从中提取能量,而且可以有效降低浓海水的盐度,在产电的同时可以为浓海水的低盐排放贡献一份力量。
RED技术是一种新型绿色发电技术,其基于离子交换膜的选择透过性,利用浓海水和河水的浓度差进行产电。RED更适用于低盐度差的江河入海口处发电,因其具有能量密度高、可操作范围广、膜污染小、环境友好等优势,成为一种极具潜力的处理技术。
自20世纪50年代开始,相关学者即开始了有关RED的研究,随后各国有关RED的研究逐渐展开,离子交换膜的快速发展也带动了RED技术的进一步发展。自2010年以来,有关RED研究的文章逐年递增,关于反电渗析技术的应用与研究也逐渐从传统的产电向环境保护和新能源开发方面转变。
在过去的几十年中,针对RED的研究主要集中在离子交换膜、盐类型、溶液浓度、进料流速和电极系统等方面。而隔板作为RED膜堆的重要组成部分对RED的性能也具有重要影响。D. A. VERMAAS等在对膜间距离分别为60、100、200、485 μm的RED实验研究中发现,在膜间距为60 μm的膜堆中,泵送功率较大,泵的损耗较大,不能达到较高的功率密度。
较小的膜间距离会增大水力学损失,而较大的膜间距离会增加欧姆电阻,因此存在一个合适的膜间距离使RED的性能较优。由此可见,研究隔板厚度和流道类型对RED性能的影响对于进一步完善RED的产电过程具有重要意义。
基于前期研究中探讨了重复单元数、膜面流速和溶液浓度对反电渗析产电过程的影响,本研究以海水淡化后副产的浓海水和河水作为浓、淡室进料溶液,通过在亚德世膜下采用不同的隔板初步研究膜间距离和流道类型对反电渗析产电过程的影响,并换用富士膜进行实验对比,以期为反电渗析法处理海水淡化副产浓海水提供技术参考。
1 实验部分
1.1 实验试剂与材料
以海水淡化副产物浓海水的盐度和河水盐度为实验背景,折合NaCl质量浓度分别为66.70 g/L和0.66 g/L作为浓、淡室进料液浓度,极室溶液为0.05 mol/L的铁氰化钾、亚铁氰化钾和1 mol/L的氯化钠溶液。实验过程中的浓、淡室溶液采用自来水配制,极室溶液采用去离子水配制。主要试剂:氯化钠(NaCl),注射级,山东肥城精制盐厂有限公司;铁氰化钾(K3[Fe(CN)6])、亚铁氰化钾(K4[Fe(CN)6]·3H2O),分析纯,天津福晨化学品有限公司;硝酸银(AgNO3),分析纯,天津江天化工技术股份有限公司;氯化钠(NaCl),分析纯,天津科密欧化学试剂科技有限公司;铬酸钾(K2CrO4),分析纯,天津市天大化学试剂厂。
实验过程中采用的直流道隔板厚度分别为0.75、0.85、1.10 mm,斜流道隔板厚度分别为0.85、0.95、1.10 mm,直流道与斜流道隔板示意如图1所示。
实验过程中采用了2种离子交换膜,分别为国产亚德世(Yadeshi,YDS)膜和进口富士(Fuji,FJ)膜,均包括均相阳离子交换膜(CEM)和阴离子交换膜(AEM)。除电化学工作站测得的膜面电阻外,其余参数均由厂家提供。富士膜的价格高于亚德世膜(前者为900~1 400元/m2,后者为400~550元/m2)。2种离子交换膜的参数如表1所示。
1.2 实验装置
膜堆是RED实验中的重要组成部分,图2为膜堆内部结构示意。
膜堆主要由阳离子交换膜、阴离子交换膜、隔板、隔网、极板和垫片组成。阴阳离子交换膜和隔板隔网交替排列,构成RED中的浓室和淡室。溶液在各自室内流动,互不干扰。隔网的存在,有利于溶液在膜内的分布与均匀流动,减小浓差极化现象。电极板由钛钌网构成,有效面积(13.5×7) cm2。离子交换膜面积为(27×11) cm2,有效面积为(17×7) cm2;膜对数为8对。
极液通过蠕动泵打入极室,在阴阳极板中循环流动;浓、淡室的进料流量通过蠕动泵控制,膜面流速为0.71 cm/s。实验过程中在膜堆外部连接一个可调节电阻箱,电压表接至膜堆两侧,电流表串联到该电路中,通过在60~1 Ω范围内改变电阻值来记录相应的电压、电流数值。因电压与电流成线性关系,故截距即为开路电压值,而斜率为膜堆内阻值,进而可计算RED过程中的功率密度。取实验前后淡室进出口溶液,采用AgNO3滴定法测量离子浓度变化,可得出离子迁移量,进而分析离子由浓室向淡室迁移的情况。
1.3 分析与计算方法
RED过程为稳态过程,其中RED内阻不变,可将膜堆视作有稳定输出的电源。通过调节外阻并记录外电压及电流,由欧姆定律得到电动势及内阻,其公式表达为:
2 结果与讨论
2.1 直流道中不同膜间距离的影响
不同的隔板厚度形成的隔室厚度和膜间距离不同,在RED中产生的内阻不同。更具体地说,低盐浓度的河水隔室对RED的内阻贡献更大。更薄的隔室即更小的膜间距离,将减少系统阻力,从而获得更大的功率密度。因此,可以通过调整和改进RED的隔板厚度来改善功率密度。图3为采用YDS膜下直流道中不同膜间距离对RED性能的影响。
由图3(a)可知,当膜间距离从0.75 mm增加到1.10 mm时,反电渗析的产电性能总体呈下降趋势。随着膜间距离的增加,膜堆的内阻增加。根据文献报道可知,当膜间距>100 μm时,膜堆中欧姆电阻的贡献最大,欧姆电阻主要受低浓度河水隔室的电阻控制,与膜间距离成正比。
在相同的膜面流速下,膜间距离越大,进料流量越大,溶液欧姆电阻越大,导致总电阻增大。随着膜间距离的增加,溶液在沿浓度梯度流动的过程中浓、淡室之间的离子迁移量减小。
由图3(b)可以看出,当膜间距离从0.75 mm增加到1.10 mm时,离子迁移量由500.78 mg/L减小到377.29 mg/L。
根据公式(2)可知,开路电压与浓度差成正比,离子迁移量的减小使浓、淡室之间一直保持着较高的浓度差,因而形成的开路电压较高;同时,在进料流量较小时,膜和溶液界面会出现较严重的浓差极化现象,实际的输运浓度梯度比溶液本身预期的浓度梯度低,也会导致在膜间距离较小时开路电压的降低。
综上,随膜间距离的增加,开路电压和内阻增加,功率密度和离子迁移量减小。为了获得较高的开路电压和功率密度,同时使浓海水的浓度有一定程度下降,取隔板厚度为0.85 mm较适宜。
2.2 斜流道中不同膜间距离的影响
在斜流道中溶液在膜内的流动会受到一定影响,不可避免地发生浓差极化现象,影响膜间离子传质,进而影响反电渗析的产电性能。图4为采用YDS膜下斜流道中不同膜间距离对RED性能的影响。
由图4(a)可知,开路电压和膜堆内阻都随膜间距离的增大而增大。虽然膜间距离较大时,较高的进料流量在一定程度上可以减缓浓差极化现象,但淡室溶液的电阻依然起主要作用,因而膜堆内阻较大。
膜堆内阻增大带来的负影响大于开路电压上升带来的正影响,因而最大功率密度呈下降趋势,当膜间距离从0.85 mm增加到1.10 mm时,最大功率密度由0.312 5 W/m2减小到0.274 9 W/m2,降低了12.03%。
由图4(b)可知,离子迁移量随膜间距离的增大而减小。综上,与直流道相似,在斜流道情况下膜间距离的增大会对产电功率密度和离子迁移量带来不利影响。
2.3 直流道与斜流道的RED性能对比
固定膜间距离为0.85 mm和1.10 mm,采用YDS膜对直流道与斜流道的RED性能进行比较,结果如图5所示。
由图5(a)可知,直流道与斜流道下的最大功率密度均随着膜间距离的增大而减小。当膜间距离为0.85 mm时,斜流道的最大功率密度较直流道降低了13.96%;当膜间距离为1.10 mm时,斜流道的最大功率密度较直流道降低了12.90%。斜流道下功率密度较低的主要原因是流体流动分布不均,水力学损失较大,产生的膜堆内阻较高,进而影响了产电功率密度。
由图5(b)可知,斜流道下的离子迁移量低于直流道,原因在于斜流道中存在流体流动分布不均匀的现象,扰乱了离子湍动规律,不利于离子由浓室向淡室迁移。综上,对于功率密度和离子迁移量而言,直流道的RED性能更优。
2.4 基于富士膜的影响结果
为了进一步确定RED中膜间距离和流道类型对产电性能的影响,更换进口富士膜进行对照实验,结果如表2和表3所示。
实验结果表明,无论是直流道还是斜流道,开路电压均随膜间距离的增大而增大,但采用富士膜的开路电压较采用亚德世膜低,这与膜的选择性和浓度变化有关;
内阻均随膜间距离的增大而增大,当隔板厚度较大时,经过膜堆的料液增加,淡室的电阻会有明显提升,使整体电阻增大;
随着膜间距离的增加,最大功率密度均呈现下降趋势,采用富士膜的最大功率密度相较亚德世膜更高。
膜间距离越大,离子迁移量越小,直流道下的产电性能和离子迁移量均优于斜流道。
综上,采用富士膜的膜间距离和流道类型对RED性能的影响规律与采用亚德世膜一致。由于国产化的亚德世膜成本远低于进口富士膜,采用国产亚德世膜更具经济意义。
3 结 论
通过实验分析了反电渗析过程中采用国产化亚德世膜情况下隔板厚度和流道类型对RED产电性能的影响,并用进口富士膜进行了实验对比。具体结果如下:
(1)在直流道下,随着膜堆中膜间距离的增大,开路电压增大,且与之成正比,同时膜堆内阻也呈现增大的趋势。膜间距离较大时,较高的进料流量会阻碍膜内离子的迁移,有利于开路电压的升高,但膜堆内部存在较多的低浓度溶液会使膜堆内阻升高。
膜堆内阻升高带来的负影响大于开路电压升高带来的正影响,导致功率密度下降。综合考虑开路电压、功率密度和离子迁移量,选用0.85 mm的隔板,此时功率密度为0.363 2 W/m2。
(2)斜流道下RED产电性能趋势与直流道情况类似。随着膜间距离的增大,膜堆开路电压和内阻呈增大趋势,功率密度和离子迁移性能呈下降趋势。
(3)在相同膜间距离下,斜流道下的开路电压和膜堆内阻高于直流道,功率密度和离子迁移量则低于直流道,斜流道下RED的整体性能不如直流道。
(4)与国产亚德世膜相比,采用富士膜的RED性能略优,但考虑成本问题,采用国产亚德世膜更具经济意义。
延伸阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
7月13日,中国电建所属山东电建三公司与ACWAPower签订沙特拉比格四期海水淡化项目。这是中国电建在沙特继拉比格三期,朱拜勒二期、3A海水淡化、3B海水淡化工程后,签订的第5个大型海水淡化项目。项目位于沙特红海沿岸拉比格市,采用100%反渗透海水淡化技术,日产水量60万立方米,主要为圣城麦地那供水
摘要:本发明提供的一种固液分离的太阳能海水淡化装置,整合顶置加热面太阳能蒸发技术和新型热法海水淡化技术,开创了太阳能海水淡化蒸汽冷凝热回收利用新技术。光热转换单元采用减压蒸发技术,能尽可能多地制得蒸汽,提高太阳能利用率。固液分离的海水淡化装置能最大限度回收利用蒸汽冷凝热,解决了现
顶置加热面太阳能蒸发技术是中国创造的最新专利技术。据此专利技术,顶置加热面太阳能海水淡化试验装置成功开发。妥善解决了太阳能海水淡化技术必须解决的光热转换、海水蒸发、蒸汽冷凝等问题。顶置加热面太阳能海水淡化试验装置可广泛用于科研教学及太阳能海水淡化项目建设原理验证。现将装置结构、工
沙特阿拉伯国际电力(ACWAPower)与全球供水公司(WaterGlobalAccess)签订了一项工业发展协议,旨在开发和推广水力射流脱盐(HID)技术。探索替代反渗透的方法在沙特达成协议后,一种新型热法海水淡化技术的开发工作正在被持续推进。沙特海水淡化与绿氢开发商沙特国际电力(ACWAPower)已经与全球供水
阿拉伯联合酋长国(UAE)初创公司——曼哈特(Manhat)开发了一种太阳能海水蒸馏技术,可与漂浮农场相结合,以解决中东(MiddleEast)和北非(MENA)地区水和食物短缺问题。深度技术解决方案该蒸馏技术可以通过捕获海洋表面中蒸发水来生产淡水。该技术的工作原理是在海岸边上放置一个类似温室的大型结
从天津滨海新区发展改革委获悉,近日,《天津市海水淡化产业发展“十四五”规划》(以下简称《规划》)发布。未来,天津市将发挥海水淡化的良好产业基础和先发优势,瞄准世界海水淡化产业科技前沿,突破“卡脖子”技术,发展装备制造,构建全产业链条,建设全国海水淡化技术创新高地、装备制造基地,形
北极星水处理网获悉,5月20日,天津市人民政府办公厅印发天津市海水淡化产业发展“十四五”规划,规划提出,“十四五”时期,发挥天津海水淡化良好产业基础和先发优势,瞄准世界海水淡化产业科技前沿,突破“卡脖子”技术,发展装备制造,构建全产业链条,建设全国海水淡化技术创新高地、装备制造基地
由于当今社会经济的迅速发展,淡水资源短缺已是一个全球性的问题。我国是海洋强国,对海水进行有效地开发利用,可成为淡水重要的补充来源。海水淡化作为沿海地区非常规的新型水资源,其开发利用已逐渐受到中央和地方政府的重视。海水资源综合利用的研究有3个重要领域:(1)海水淡化,即运用海水淡化的
以色列解决本国用水问题的海水淡化技术现在有了新用途:把淡化过的海水注入境内最大淡水湖加利利海,以缓解这一重要水源地因气候变化和过度利用不断“缩水”的环境危机。加利利海也称加利利湖,位于以色列东北部,源于约旦河,与南部的盐水湖死海一样均为内陆湖,是以色列最大天然淡水水源,也是全球海
日前,哈尔滨工业大学环境学院马军院士团队与阿卜杜拉国王科技大学(KAUST)赖志平教授团队联合攻关,在膜法水处理技术研究领域取得突破,研究成果以《超高通量纳米多孔石墨烯膜利用低品质热源实现可持续海水淡化》(AnUltrahigh-FluxNanoporousGrapheneMembraneforSustainableSeawaterDesalinationusi
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!