北极星
      北极星为您找到“异养反硝化工艺”相关结果142

      来源:微信公众号“治污者说”2022-04-11

      1、反硝化的缺氧环境生物池内的反硝化反应是一个缺氧反应,有氧原子的参与,但不是氧气参与,在方程式中可以看到,反应中的氧来自于硝酸盐氮中的氧原子,参与反硝化反应的反硝化菌属型兼性菌,在存在分子氧时,利用分子氧作为最终电子受体分解有机物

      厌氧氨氧化—城市主流污水处理工艺的前世今生

      来源:净水技术2022-04-07

      城市生活污水的高c/n可能导致细菌的繁殖,降低aob及anaob的竞争优势。根据monod方程,低氨氮浓度也降低了anaob的生长速率和活性。...与常规的生物脱氮方法相比,其优势在于不需要曝气,充分降低充氧电耗;无需有机碳源,节约了外加碳源所需的运行费用;不涉及型的反硝化菌,降低了剩余污泥产量。

      来源:微信公众号“治污者说”2022-04-05

      硝化菌不仅从数量上还是从反应速率上都远远低于降解有机物的菌,这种情况下,在受到进水有机物浓度变化之后,污泥浓度的不足和溶解氧不及时调整,都会第一时间影响到硝化反应的进行。...如果没有及时针对进水有机物浓度增加而进行污泥浓度的调整时,原有的好氧池内有机物氧化降解的区域自然增大,加大的反应区域主要是因为降解有机物的菌在数量没有没有增长的情况下,需要增加反应时间来完成对增加的进水有机物浓度的降解

      BioDopp<mark>工艺</mark>应用于污水厂提标改造工程实例探讨

      来源:工业水处理2022-03-31

      cod去除率较高,说明在biodopp池中细菌含量高,这些菌通过呼吸作用摄取水中碳源为自身代谢提供能量,进而降低水中cod。2.2 tp的去除效果 tp去除效果见图3。

      来源:环保工程师2022-03-29

      ,反硝化池do大于0.5,破坏了缺氧环境,使兼性菌优先利用氧气来代谢,硝态氮无法脱除,整体导致tn的升高,反硝化池缺氧环境破坏,后面往往带来的可能是氨氮的超标,原因是硝化细菌无法形成优势菌种,不过曝气池足够大

      来源:微信公众号“治污者说”2022-03-14

      硝化菌的一些与工艺管理相关的特点主要有:1、溶解氧do:充足的溶解氧是保证氨氮达标的重要工艺条件,这个主要是从硝化菌自身的硝化速率远低于型好氧菌的有机物的氧化速率考虑的。

      提高脱氮效果 你需要控制好这几个指标!

      来源:环保工程师2022-03-01

      5、曝气池进水碳源进入硝化池bod5值应控制在80mg/l以下,当bod5浓度过高,菌迅速繁殖,与自养菌争夺氧气,并成为优势菌种,使硝化细菌不占优势,硝化反应降低直致崩溃。...要使硝化菌存活并占优势,要求污泥龄大于4.76d;但对于型好氧菌,则污泥龄只需0.8d。在传统活性污泥法中,由于污泥龄只有2~4d,所以硝化菌不能存活并占有优势,不能完成硝化任务。

      来源:环保工程师2022-01-21

      三、mbbr同步硝化反硝化的影响因素 实现 mbbr 同步硝化反硝化的关键技术是控制 mbbr 内硝化和反硝化的反应动力学平衡,解决自养硝化菌和细菌的do之争及反硝化菌和细菌的碳源之争等,故实现其主要控制因素有

      来源:微信公众号“治污者说”2022-01-17

      好氧工艺降解cod和氨氮,氨氮由于硝化速率较弱,一般会在cod降解末期后,菌对溶解氧的需求下降以后开始进行,因此好氧段的溶解氧是否充足,是要看是否提供到氨氮完成硝化反应,检测氨氮即可判断好氧时段的溶解氧是否充足

      来源:环保工程师2021-12-19

      ,反硝化池do大于0.5,破坏了缺氧环境,使兼性菌优先利用氧气来代谢,硝态氮无法脱除,整体导致tn的升高,反硝化池缺氧环境破坏,后面往往带来的可能是氨氮的超标,原因是硝化细菌无法形成优势菌种,不过曝气池足够大

      王胤:主流厌氧氨氧化工艺的研究与应用进展

      来源:净水技术2021-11-08

      氨氮首先被严格好氧的氨氧化细菌(ammonia-oxidizingbacteria,aob)和亚硝酸盐氧化菌(nitriteoxidizingbacteria,nob)氧化为亚硝态氮(no2--n)和硝态氮(no3--n),之后

      荣获国家技术发明二等奖的“深度生物脱氮技术” 到底是个啥?

      来源:环保工程师2021-11-05

      删氮滤池运行以来,出水总氮浓度稳定低于10mg/l,运行成本较反硝化滤池降低40%以上。...“删氮技术”的主要优势包括:①复合功能性生物载体原材料相对廉价,使得“删氮技术”较常规反硝化深度脱氮技术成本大幅度降低;②“删氮技术”是自养反硝化主导的污水生物脱氮技术,能够实现极低的污泥产率;③“

      生活垃圾焚烧厂渗沥液厌氧氨氧化脱氮效能及微生物机理研究

      来源:环境工程2021-11-01

      aob)和厌氧氨氧化菌(anammox)的活性均有不同程度的下降,采用宏基因组学结合16s rdna高通量测序技术对比分析微生物的群落和功能组成变化,发现渗沥液中高浓度的有机物使短程硝化段和厌氧氨氧化段内反硝化菌相对丰度上升

      氨氮与TP交替超标 是什么原因?

      来源:环保工程师2021-10-08

      2、碳源问题碳是微生物生长需要要最大的营养元素.在脱氮除磷系统中,碳源大致上消耗于释磷,反硝化菌正常代谢等方面.其中释磷和反硝化的反应速率与进水碳源中的易降解部分,尤其是挥发性有机脂肪酸(vfa)

      来源:环保工程师2021-09-18

      直接破坏了反硝化的环境,使菌处于优势状态,最终会导致硝化崩溃!...垃圾渗滤液采用a2o工艺,硝化氨氮去除比较好,为什么反硝化的硝酸盐和亚硝酸盐去除的效果并不是很好呢,碳源充足,还有什么原因造成的呢?碳源充足,反硝化效果差是什么原因?

      高氨氮有机废水深度处理新利器:SCONDAⓇ<mark>工艺</mark>

      来源:环境纵横2021-08-25

      , partialnitritation,denitritation andanammox),该工艺有机结合了短程硝化-反硝化-anammox等与自养脱氮过程,可实现高浓度含氨有机废水的一步式高效处理

      研究综述 | 生物除磷:T菌作用大于A菌?

      来源:水业碳中和资讯2021-07-23

      例如,t菌可吸收利用大分子有机物并降解为小分子物质排出胞外,不仅可以此维持自身代谢延续且发酵产物可供给其它细菌代谢利用(譬如为a菌提供碳源),由此可知t菌与a菌具有协同代谢共同完成生物除磷的潜力,这也许是其在污水处理厂中丰度较

      来源:环保工程师2021-07-09

      ,反硝化池do大于0.5,破坏了缺氧环境,使兼性菌优先利用氧气来代谢,硝态氮无法脱除,整体导致tn的升高,反硝化池缺氧环境破坏,后面往往带来的可能是氨氮的超标,原因是硝化细菌无法形成优势菌种,不过曝气池足够大

      案例:提质增效对污水处理厂的影响分析

      来源:给水排水2021-06-25

      有研究表明,菌生长速率大约是自养菌的10倍,do的不足加之好氧菌的大量繁殖,很可能导致出水氨氮不达标。然而,实际出水氨氮较低,氨氮去除率平均值为98.1%。

      [碳中和] 低能耗技术之把厌氧氨氧化说清楚

      来源:惟创环境2021-06-21

      硝化过程需要消耗氧气,而反硝化过程主要是由菌在起作用(需从有机化合物中获取碳源的叫菌;可从无机化合物,比如co2中获取碳源的叫自养菌),因而需要曝气,会产生大量能耗,并且需要消耗大量有机碳源,反应过程中还会释放